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ABSTRACT

This work can be split intc two parts.In the first part
we generalize the concept of Unique Factorization by viewing
Unique Factorization Domains as integral domains, non 2z€ro
non units of which can be expressed uniquely (up to
associates and order) as products of finitely many mutually
co-prime associates of prime powers. Our working rule con-
sists of taking a subset Q of the set P of all properties of
a general prime power and investigating integral domains,
whose non zero non units are expressible uniquely as as pro-
products of finitely many non units satisfying the proper-
ties in Q. For example we take Q consisting of only one
property: of any two factors of a prime power one divides
. the other and call a non unit x rigid if for each h,k
dividing x one divides the other. We find that in a Highest
Ccommon Factor domain a product of finitely many rigid ele-
ments is expressible uniquely as the product of mutually
co-prime rigid elements. And a Highest Common Factor domain
with the set of non zeros generated by rigid elements and
units is the resulting generalization of a Unique Factori-
zation® Domain.

We consider three different Q's which,é%uitable integral
domains give distinct generalizations of Unique Factorization
domains. In each case we provide examples to prove their
existence, discuss their points of difference with UFD's and
study their behaviour under localization and adjuncticn of
indeterminates. We also study these integral domains in
terms of the valuations of their fields of fractions and

show that these integral domains are generalizations of Krull




domains.

The second part is mainly a study of ideal transforms
in generalized Krull domains and some of the results are

generalizations of results known for Krull domains.
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CHAPTHR O
INTRODUCTION AND CONTENTS

1. Introduction . The main purpose of this work is to study
Unique Factorization and its generalizafiona in commutative
integral domains. A Unique Factorization Domain is defined
to be an integral domain in which every non zero non unit
element x is expressible as the product of a finite number
of principal primes i.e.
X = PiDgese B

where a principal ideal (p) is a principal prime if p |ab
implies that p|a or p|b.

It is well known that

(1) a Unique factorization domain (UFD) is an HCF domain
ise, LVery two elencnte have g highest common factor,

(2) a UFD is a Krull domain i.e an integral domain R
such that

K1. every non zero non unit of R is contained in only a
finite number of minimal non zcrQ prime ideals of R

Ky
the localization at P is a discrete rank one valuation ring.

. for every non zero minimal prime ideal P of B; RP

KB' R =N RP where P ranges over all minimal non zero
primes pof R .

(3) every non zero non unit x of a UFD can be written
as X = upf‘p?’... pﬁ"; where u is a unit a; >0 and Bi ,p, are
are co-prime if i £ j (ef [30] Theorem 5.3 (g)).

e observe that if x = up?*pgz... p2nas in (3) above it
is expressible as a product of a finite number of mutually
co-prime elements uipfi(i= 1,2,...,n) where ugp?tare such that

(1) for every non unit x |u pv there exists a positive inte =~

- ger n; such that u;pot|xit.
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(2) for every n and for every pair xt,yLIuLp?aL; KL|YL
or y |x¢.

"(3) ir utpfai is non co-prime to ab then for every n
and for every non unit ylutp?ai, which divides &b, ¥ = y.4¥2
where y, |a and y, |b g

This observation gives rise to the
Question . If an element x in an integral domain R is
expressible 88 ‘X = QyQz... Q, (4)
where qgare noff units,(q;,q;) = 1 if i # j and for each g it
is true that
Q. for each non unit by |q; there exisss n; such that q;'hf%.
Q2. for each n and for each pair ha.kL|Q? ; h£|kL or kLIhL.

Qj. if q is non ee-prime to ab then for every n and for
every y|q? which divides ab; ¥y = y,¥, where y, |a and y,|b .

" Is the factorization (A) unique up to associates and or-
der of q even if g are not powers of primes ?

The main part of this work is the result of an effort to
find an answer to the above question. We in fact find out a
number of different generalizations of Unique Factorization

Domains .

2. Notations and Notions. We explain the notations and
notions when ever we use them except for those in common use
e.g. (1) we use a|b to indicate, a_divides b

(2) (a,b) is used to denote the highest common factor of
a and b as well as the ideal generated by a,b and the context
determines the meaning of (a,b). More over we use (a,b) % 1
to denote that a and b have at least one non unit common fac-
tor

(3) by x is_an_associate of y we mean

X =W ; ¥ = vX where u and v are units.
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Finally we mention that all rings considered are commu-
tative with 1.
3+ Contents , In Chapter 1, we prove that the answer to the
above question is in the affirmative, And from this arises
the concept of a Generalized Unique Factorization Domain
(GUFD). We show that & GUFD is a generalized Krull domain
(GKD) where a GKD is an integral domain satisfying K1.§3.or
the definition of a Krull domain along with:
(Ké). for every minimal prime P, Ry is a rank one valuation
domain. We also show that an HCF-GKD is a GUFD.
In Chapter 2, we consider the properties of a non unit
x # 0 satisfying
(R). for every pair of factors h,k of x ; h|k or k|h,
slements satisfying (R) are already known and are
called rigid elements (cf [ 6 ] page 129). We restrict our
study of rigid elements to those in HCF domains and show
that if in an HCF domain R an element x is expressible as
the product of a finite number of mutually co-prime non unit
rigid elements i.e.

X = IyTheeery ; r, rigid and (ry,r;) £ 1 for 1 # j
then this expression is unique up to associates of and up to
a Dermutation of Iy . We shall call an HCF domain R a Semi-
rigid Domain if sach non zero non unit of R is expressible
as a product of a finite number of mutually co-prime rigid
non units. We also show that if R is a Semirigid Domain then
there exists a family F = | ?ﬁ}ae I of prime ideals of R such
that

Sl. €very non zero non unit of R is contained in only
a finite number of elements of F .
Fy N P, does not contain a non zero prime ideal,a,f¢l

A Ff
83. RP is a valuation domain for each « €l




SLI-. R=ﬂRPaa€I.

Obviously if F consists of minimal primes only, the
above four conditions define a GKD i.e. Semirigid Domains
are another generalization of Xrull domains.

In Chapter 3, we consider the factorization of an arbit-
rary non zero non unit in an HCF domain of Krull type and

use this study to define Unigue Representation Domains.

Chapter L, is mainly concerned with the study of ideal
transforms in a GKD and a part of it consists of extensions
of results proved in [15].
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CHAPTER 1
GENERALIZ%D UNIQUZ FACTORIZATION DOMAINS

O. Introduction . The theory of Unique Factorization Domains
is well known and the most part of the theory is covered by
[30],(31],032] and by [23].

To start with, we mention that if R is a UFD then every
non zero non unit x in R can be expressed as

s upitple. ol o ——===== (A)
where u is a unit and pivare powers of primes such that
(pfi,p?J) =1 1if 1 £ j and the expression (A) is unique up
to associates of the prime powers and up to a suitable per-
mutation (cf [30] page 16).

We call a non zero non unit a an atom if a = a, a,
implies that a, or a, is a unit and an integral domain is
called atomic if every element in it is €xXxpressible as a pro-
duct of a finite number of atoms. A prime is defined to be
& non zero non unit p such that plab , implies that pla or
p|b. Obviously ir P=2aband a=a'p ; P =a'bp i.e.

1 =a'b , that is b is a unit, similarly we could take
b = b'p and show that a is a unit. In other words a prime is
an atom and a UrD is an atomic integral domain.

Our main aim in this chapter is to replace the prime
Rowers by the more flexible non units; prime gquanta which
behave like prime powers but are not products of atoms, and
to work out & generalized theory of féctorization which does
not require a generalized unique factorization domain to
be atomic.

Section 1,of this chapter mainly deals with the defi-
nition of a prime quantum, its properties and with the
definition of & Generalized Unique Factorization Domain(GUFD)

as an integral domain in which EVEry non zero non unit is
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is expressible as the product of a finite number of mutually
éo-prime,prime quanta. In section 2 we give examples to en-
sure the existence of notions introduced in section 1, and
of course to justify their introduction. Section 3, estab-
lishes analogues of some results about UFD's, while in sec-
tion L4, we study the stability properties of the GUFD's. In
section 5, we study the ideal theory of GUFu's and related
integral domains and at the end of this section we prove
that if a proper ideal A in a Prufer domain R has a primary

decomposition then this decomposition is unique.

1. Definition and properties of Prime quanta.

We split our task of defining a prime guantum into two

parts, that is we give the generalization of the concept of
atom first and state the
Definition 1. A non zero non unit element h in an integ-
ral domain R will be called a guantum if for each non unit
h1|h there exists a positive integer n such that hlhf.
We note that the semigroup R¥ = R - {0f 1is preordered
by ajb ( divisibility) and if U is the set of all the units
of R then the semigroup r*/U is partially ordered by

aU < bU iff a|b, and obviously by h_is a quantum we mean

that for every U # h,U < hU there cxists a positive integer
n such that hU < hnU. In view of the partial order we may
call a quantum hgyhigher than another quantum hyif h;U<hgU.
Definition 2. If in an integral domain R a quantum h

divides an element a such that there exists no other quantum
h, with hU < hy;U < aU , then h will be said to divide a
completely.

Now to make a quantum behave more like a prime power

we impose some more conditions on it by
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Definition 3. A quantum q in an integral domain R will
be called a prime gquantum if

(1) for every n and for every a »% |@% ailasor e |9

(2) if q is non co-prime to ab then for every n and for
every q, |q" which divides ab, @ = q.dg such that qua.and
qﬁ|b i.e. every factor of q” is primal.

Wwe recall that an element x in an integral domain is

called primal if x|ab implies that X = yz ; y|a and z|b
and an integrally closed integral domain in which every

non zero element is primsl is a Schreier domain. More over

an HCi domain is a Schreier domain (cf 5] p.254).

Looking back at the Definitions 1 and 3, we note that
an atom vacuously satisfies the condition for an element to
be a guantum, while a prime D is a prime gquantum because
every factor of pn is primal and this marks the basic
difference between the concepts of a quantum and of a prime
quantun.

Definition 4. Two prime quanta will be called similar if
they are non co-prime and dissimilar or distinct otherwise.

Lemma 1. In any integral domain R.

(1) Any non unit factor of a prime quantum is a prime
quantum.

(2)If Q4,92 are similar prime quanta then a1l gz or gz | as

(3) If q,,9. are similar prime guanta then aiq is a
prime quantum similar to them.

(4) If a prime quantum q divides &b completely, that is
there is no prime quantum q'| ab such that g q' properly;
then q = 9,0z Where a = 8,Q¢ » D = by gz and
:(ai!Q) = 1 =(by,q).

(5) The relation of similarity between prime quanta is

==
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an equivalence relation.

Remark 1. Statements (1) - (3) can be equivalently re-
placed by the following comprehensive statement:

" The prime quanta in an integral domain similar to a
given one, with units form a multiplicative set which is
saturated and totally ordered by divisibility."

Proof. (1) Let q be a ;:;;i quantum and q, be a non unit
factor of g. To prove that q, is a prime quantum we have to
show that q, satisfies (1) and (2) of Definition 3, (obvious-
ly g, is a quantum). Now for sonc n

qr,qs|qf then qr,qslqn and so quqs or qS]qr i.e. (1)
of Definition 3,is satisfied.

Further if q; is non co-prime to ab then so is gq, and
every factor Q of qf which divides ab, being also a factor
of q” can be written as q, = q,q, Where q ja and q,|bs which
is (2) of Definition (3).

(2) If q,,Q9; are similar prime quanta then let gz be a
non unit common factor of g, qz. BY (1) above g3 is a prime
quantum. So there exist :m,n such that g |qs , gz |q5 and
thus q1q3|q§+m and by (1) of Definition 3, gy |gs or dalids »

(3) We establish that if g is a prime quantum then " is
again a prime quantum (for every positive integral m). By
(1).of Def. 3, if x,y|q™ then x|y or y|x. So if a non unit
n|q® , h|q or q|h. If h|g then there is n such that g |n"
and so q"|h™, and if q|h then qm|hm. vence g is a e
quantuia. Further if h, ,h,arc factors of an integral .power of
qm, h, ,h, é4re factors of a power of q and soO h, |hy or hy |h; .
Similarly if qmis non co—pr}me to ab then so is g and it is

. easy to see that q" satisfies (2) of Def. 3 .
Finally if qq,q2 are similar prime quanta and if gy is

" is a non unit common factor then there exists an integer m
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such that q q |q§1'i.e. q, 9, is a factor of a prime quantum
and hence is a prime quantum,

(4) Let q be a prime quantum such that q|ab completely,.
By (2) of Def.3, @ = q, g such that g |a and g |b, so that
ab= a, b, q q, . Suppose that (a,, q) # 1, and let g be a
non unit common factor i.e. a, = a,gy. Thus

ab = a,b,q,9,q; , but then q g q = qq; is a prime quan-
tum higher than q with respect to &b, a contradiction and
hence (g ,q) = 1. Similarly (b,,q) = 1.

(5) Reflexivity and symmetry are obvious. For transitivity
let q, ,q; and g, be prime quanta such that (a) q is simi-
lar to g, and (b) g, is similar to q,.

Here (a) implies that q, and g; have a non unit common
factor q,, say. Now g, and q; are similar and so by (3)
above q,|q; Or gz|az. If q|qs then g;,|q; and so g and g
are similar. Further if qalq2 then since q,, and gz both
divide a prime quantum q;,9,,|a3 or qz|qyz, that is gy and
g; are similar.

Corollary 1. A quantum is a prime quantum iff it has a
prime quantum as a factor.

Proof. If g is a quantum and g is a prime quantum divi-
ng it then there exists & positive n such that q]qf. Now
@, being a prime gquantum the result follows from (1) and
| of the sbove lemma. The converse is obvious.

- Corollary 2. If a prime quantum anb and(q,a) = 1 then g|b.
Proof. By (2) of Def. 3, if gq|ab then q = gygssuch that
2 and g, |b, but since (qg,8) = 1, g, is a unit and hence

__ Dposition 2. If an element in an integral domain R is
¢8sible as the product of a finite number of distinct

pilar prime quanta then the expression is unique up to
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the permutation of distinct prime quanta and up to their

associates.

x Proof. Let X be a non 2ero non unit element in an integ-

ral domain R and let x be a product of prime quanta g 1i.€.
X = Qdzgee+Gy » Q%> dissimilar if i # J
Suppose that X can also be written as
X = DyDgecePn 5 P prime quanta, Py sPj dissimilar if
i #£i. Now
QyQzee+Qn = P1P2e+<Pm

since g, is a factor of the L.H. S.

Qs | D12+ +Pn

and similarity between prime quanta being an equivalence {

ol mod e i

relation, g, can be similar to cady=ems Of the pi ( 1 =1...2) ;

while from the definition of a prime quantum it follows that ‘

qsis similar to at least one of the D . That is there |
exists a unique py such that as | Pt -

We claim that g4 and pt &are associates,because rever- E
sing thec process, that is taking pthiqB...Qn , we get pthl.
And combining the two results confirms the claim.

Now we are left with |

gzQze++4n = Pii@z--opt_19t+1 eeeDPm
and repeating the above procedure We conclude that n = m and
aachfq; is an associate of some pifor a suitable permutation
of D1sPzs s+ Pne
Definition 5. AD integral domain R will be called a

Generalized Unique Factorization Domain (GUFD for short)

if every non zero non unit clement x in R can be expressed :
as the product of a finite number of distinct prime quanta.

The proof of Proposition 2, depends heavily on the
assumption that we can write X = Q1Qz2..+Qn, Where

(1) qi are prime quanta (i = 1,2,..n) and (2) qi,q; are 1
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dissimilar if i # J.
In the case of an element x which is a product of

we do not need the assumption (2) above, while proving the

primes

uniqueness of the factorization because of the fact that a

prime is an atom . But as it can be easily verified that

every positive integral power of a prime is a prime gquantum

we can easily achieve the form

X = upfipsa...pfr ; where u is a unit and p ,p; are

non associate primes for i #£ j, and hence p?t,p?jare distinct

But before accepting the above two restrictive

prime quanta.

assumptions as a price of generalization we have to be surc

that there do exist (1) quanta (2) prime gquanta (3) quanta

which are not prime quanta (4) Generalized Unique Factori-

zation Domains.

2. Examples.

(1) Quanta: wxample 1. LvVery atom is a quantum.

Obviously every non unit factor of an atom a is an

associate of a, and so an atom satisfies the condition of

. being & quantum.

¥
Example 2. Let R be a quasi-local domain of Krull dimen-

:éfion 1. It is well known that if a,b are two non zero non

B
units of R then there e¢xists a positive integer n such that

?;jan (cf Theorem 108 123]). And of course the result is

mmetric, that is a|bm for some positive integral m. So if

2 non Zero non unit in R and h is & non unit factor of

g
ien there exists n such that x[hn. Thus we conclude that
non zero non unit element of R is a quantum. This

= -

ffﬁf}liﬁhﬁﬁ the existence of quanta which are

e

-;»;Hbetherian.

o

A prime is a prime quantum.

o
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As we have mentioned before this fact can be easily
verified. It can also be verified that an atom is a prime
quantum iff it as a prime.

sxample 4. Let R be a rank one valuation ring. Obviously
R is a quasi-local ring of Krull dimension 1. So that by
Bxample 2, above eVeEry non gero non unit of R is a guantum.
Further,R being a valuation ring if x is a non ZEro non
unit of R then for every positive integer n and for every
%, ,%s |X° , X |% or Xz|x, (holds vacuously). And if x is
non co-prime to ab then at least one of a,b is a non unit
and so is non co-prime to x . Moreover if ylxn for some n
such that y, ab then y = yi ¥ where yi|a » 2| ( follows
from the fact that a valuation ring 1s HCK). So we have veri-
fied that x satisfies (1) and (2) of Lef. 3, and thus is a
prime quantum. It may be noted that x is an arbitrary non
unit of X.

(3) Compating sxamples (1), (2) and (L) we see that any
atom which is not a prime can 8erve as an example of a quan-
tum which is not a prime quantum. Also since there exist
non Noetherian integral domains of Krull dimension 1, which
are not valuation domains we have our examples of non atomic
quanta which arec not oprime quanta.

*+ (4) ceneralized Unique Factorization Domains:

mxample 5. A UFD 1s a GUFD. This follows from the fact
that a prime is a prime gquantum.

pxample 6. A rank 1, valuation domzin. Each non zero non
unit of 2 rank one valuation domain is & prime quantum ( x.4)
and so the statement that,"ivery non zero non unit is a
product of a finite number of distinct prime quanta.” is
qgtisfied.

gxample 7. Let S be the product of two copies of positive
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rationals i.c.

S = | ﬁayﬁ ; &, rationals > O } where x,y are indeter-
minates over the field of reals. Igt R be the field of real
numbers and consider the algebra R[S] = L say. It is not
difficult to prove that L is an integral domain. Let

T=4¢te L|t is co-prime to x and y bothi.

The set T has elements of the type:

£, 0
-t,1=.1:-,_+ax°L Wri,rzeR—iog 'tq—-/)_-rax-pl.a
3 L She de)O
t, =I5 + y a,b € I{I.S] 4 € )Q-S\O;_
t, = ax + byﬁ i(yP,a) =1 = (x**, ) ad g,b € RfSI .

The foras of thouse elec.unts show that T is a multipli-
cative set, and is saturated(ci Sc.c.3). Now in the locali-
zation, (R[S])T =D , every clement 4 can be written as

d = uxgyﬁ ; where u is a unit and obviously this ex-
pression is unique. It can also be verified that fu,yﬁ are
prime quanta (a ,B rational 2 0).

Example 7, above ensures the existence of GUiD's and
as we develop the theory further we shall see that therc
exists a sufficiently large class of integral domains which

are GUFD's but are not UFL's.

3. Some results analogous to Classical theorems.

First we recall that in a ring R a set © is said to be
mﬁltiplicative if a,b € & implies that ab € S and S is satu-
rated if eb € S implies that a,b € S. Further it 1is well
known that in an integral domain R a set S generated by .
primes is multiplicative and saturated. Analogously we prove

Proposition 3. Let R be ab integral domain and H the setl
generated multiplicatively by units and prime quanta then H
is multiplicative and saturated.

/Proof. The hypothesis implies that if Xx¢€ H then

X = Q1Qz...QnWhere cach qi 18 a prime quantum or a
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unit for each i = 1,2,...n: From the fact that the product
of two similar prime quanta is a prime quantum similar to
them we deduce that if x is a non unit we can write

X % D;DgsseDy » D sDj;dissimilar if i # j.
That H is multiplicative is quite obvious. To prove
LAt B 1s satiPeted et &b ¢ H,. ?
First suppose that ab = g a single prime quantumn.
Bither, one of them is a unit or both are similar prime quan-
ta, and in both cases a,b ¢ H.
Further let ab = q,q, Wwhere g, ,q; are distinct prime
quanta. Now as q, ,q, are distinet g, |ab completely and so
Q; = Q4rQys Where q,-|a , g, |b such that a = a,;q,.,
b =bqs and (a,,9,) =1 = (b;,q,) (cf (4) of Lemma 1).
Consequently qy = a,b, implying that a, |b, or b,|a, i.e. one
of them is a unit or both are prime quanta. In other words
a and b both are products of prime guanta and hence are in H.
Applying induction on the number of distinct prime quan-

ta involved we can prove that if

ab = q4Qge.eQy 3 Qy,q; distinet for 1 # j,

then o,b are products of prime quanta and hence are in H
i.e. H is saturated.
An integral domain in which every two elements a,b have

the highest common factor is called an HCF domain. It is well

known éhat a UFD is an HCF domain and in analogy to this we
state the

Proposition 4. A GUFD is an HCF domain.

Proof. Let R be a GUFD and let x,y € R if one of them is
a unit then obviously they have a highest common factor; a
unit. If one of tnem say y is zero then x is the highest
common factor. thus we can assume x and y to be non zero non

units. Now let
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X = QQz+e0n » @ DPrime quenta and all distinct
Y = PyPoesebnm yD prime quanta and all distinct

Now for every prime quantun g |x ( i =1,2,...n) @
has a common factor with y or does not. Also if g does have
a common factor with y then q is similar to one and only
one of p; |y (Def. 3). Now select out of q ,Q25...0qn 211 those
prime quanta q,q3,...q’ such that(q',y) # 1. Similarly
select out of Py ;P2 seeeby all those p{,pi,...Ps sSuch lhat
p} are non co-prime to x. By the above assertion r = s and
we can form pairs | qf,pf] of similar prime quanta for a
suitable permutation of p' say.

Let‘d¢= (psq') where d; = p! if p'|q' and & = q if
q'|p'. Obviously as p{ and q are similar in pairs, §
exists for each i = 1,2,...r., And it is easy to see that in
each case d; is the HCF of p{,q!.

Let d = d4dz.++dr ; that 4 is a common factor of x andy
is obvious, To prove that 4 is the highest common factor we
have to show that every common factor d' of x and y divides
d. we first note taat 4' is a product of prime quanta that
is a' = e wi 3 “i distinct prime quanta dividing
X and y. That is each wi is similar to one of di,dz,«+.ar
and so divides it., And it is easy to see that d'ld and that
d is thc highest common factor,

Remarik , Many notions in the classical theory of Unique
Factorization are taken as granted; for example we hardly .
need to state the fact that if in a UFD, x is 2 non unit
factor of y then there exists a positive integer n such that
xnfy. If on the other hand we need to stress this fact we
content ourselves by saying that a UrD is atomic. In case of
a GUrD the above mentioned property holds but needs an expla-

"nation:

(
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let y = pp B ... Where p are distinct prime quanta,
And let x be a non unit factor of y, then by Proposition 3,
x is expressible as a product of distinct prime quanta, that
is X =pn'p...0 where R' are distinct prime gquanta each
dividing one ( and hence only one) of D, ye..,B, « Suppose that
for a suitable permutation of p;,n'|m . And by the definition
of a quantum, there exists a positive integer n such that _
Q,Ipfn(properly)that is x* has at least one prime quantum as
a factor which does not divide the prime quantum factor of y
which is similar to it and hence any.

Before proceeding further with the analogy, we need an
auxiliary arrangement of some new notions and facts, As our
first step we introduce the notion of a prime ideal asso-
ciated to a prime quantum.

Let g be a prime quantum in an integral domain R and
put Qq ={xeR| (x,0) #1}.

Now X,y € Qq implies that there are two prime quanta
Qs 5Qz8uch that x = x3q, , ¥ = y2Qz. As similarity between
prime quanta is an equivalence relation, g4 and gz are simi-
lar and consequently q1|q3 or qglqi. If q1|q3 say,

X+ Y =%Q+ Y202 = @ (X + y292) non co-prime to %,
that is x + y € Qq. And since for every X non co-prime to g
rx is non co-prime to q for every r in R, Qq is an ideal,
Moreover Xy € Qq implies that Xy is non co-prime to q@ and
by Def. 3, egither x is non co-prime to q or y is i.e.

Xy € Qq implies that x € Qq or y € Qq and so Qq is a prime
ideal. And this observation provides us the

Definition 6. Let q be a prime quantum in an integral
domain R then the prime ideal

(

Qq = { x e R (x,9) #1] will be called the prime

ideal associated to q.
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Further, it is €asy to see that if Q1 02 are two simi-

lar prime quanta then Qe € quand as every element in the
integral domain R, non co-prime to G2 is also non co—prime

to q, Qqag qu and similarly Qq& ¢ Qqfe , that is qq; = Qqa

and conversely if = then €9 and so en which
y qu qu o P 9, Qg ay

implies that q, ,q; are non co-prime and hence are similar.

We note that if in an integral domain R, a prime quantum
Q is contained in a prime ideal P then eVery non unit factor
Qs °of g is in P. The proof follows from the fact that q is a
quantum. This observation suggests that if a prime quantum q
is in a prime P then Qq_g P.

For further references we record the above observations
and their easy conscquences as the

Proposition 5. Let 459 59z b€ prime quanta in an integyal
domain R then

(1) Q, = quiff 9, and g, are similar.

(2) 1r P is a prime ideal in % ang qQ € P then Q cCP
and if P is minimal then Q

(3) If P is a minimal prime ideal and g €P then Q1€ P
iff q, is similar to q .

Note . By a minimal prime ideal we mean a minimal non

zero prime ideal.

We recall that an integral domain R with quotient field
K is called completely integrally closed if for a and u
in K with & £ 0, au” € R for all n implics that 4 e R (ef
[23] P.53). From Kemark 2, it follows that if x and y are
two elements of a GUFD R then x|y for all n implies that
X has no Prime quantum as a factor i.e. x is a unit. Now a
GUFD R is an HC¥ domain and if K is the quotient field of R

then for every u e K-}0] s U= Xx/y = x,/y, where (X4551) = 1.




Similarly O # a € XK can be written as a = X% /¥, where

(%, %) = 1.

Now aun

€ R for all n implies that(x/y. (% /¥, )Pe R
for all n. By the HCF property yf]ngor all n,which by the
above observation is possible only if Yy is a unit in R,
that is u ¢ R. Thus we have broved th

Propesition 6. A GUFD is a completely integrally closed
integral domain,

We go further in our pursuit of analogous results and
state the

Proposition 7. An integral domain R is a GUFD iff every
non zero prime ideal in R contains a prime quantum.

Proof'. Suppose that every prime ideal of R g02£%i?s a
prime quantum and let S be the set generatedlby prime quanta
and units of R. If S # R - {0} then by Zorn's Lemnd, the
complement R =S contains a prime idval and hence a prime
quantum, a contradiction and hence S = R ~ {0f i.e. R is a
GUFD., Ccnversely if R is a GUFD and P a prime ideal in R, let
X be a non zero element in P. Then x = Q1 Gz +..Qn Where g
are distinct prime quanta. Ubviously Q1 92.+...9n € P implies
that g, ¢ P or Q3 Qs «»-Un€ P, and proceeding in this manner we
conclude that at least one of % (1i=1,2,,..n) is in P,

Corcllary 3. If q is a prime quantum in a GUFD R then Qq
the prime ideal associated to q is a minimal prime ideal(# 0)

Proof, Obviously Qq is non zero. iow suppose that qq is
not minimal and let P be a non Z2€ro prime ideal contained in

Qq. By Proposition 7, P contains a prime guantum q' say and

by (2) of Prop.5,qq, c P. But as q' ¢ P c Yy 3 q' is similar

- to g and thus by (1) of Prop, 5, Qq = Qq. so0 that Qq c P 1.e.

q, = P.

Corollary 4., In a GUFD R €VEry non zero prime ideal
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contains a minimal (non zero ) prime ideal.

Proof. Immediate from Cor. 3 above. %

Corollary 5. In a GUFD every non zero minimal peime ideal i
3

P is associated to a prime quantum g i.e, P = Qq.

Proof. By Cor. L, P contains a prime quantum q and the

pesult follows from Prop. 5

L. Stability Properties of GUFD's.

In this section we shall establish that the property of

being a GUFL remains invariant under lccalizations and poly-

nomial extensions. For this purpose we need to introduce the

concept of a Generalized Krull Domain (GKD). ;

An integral domain R is called a Generalized Krull

Domain if i
(1) every non zero non unit x in R 18 contained in a
finite number of minimal prime ideals of R.
(2) for every minimal prime ideal P of R, Rp is a

rank one valuation domain.

(3) R =N Ry » where P varies over all the minimal prime

ideals of K.

It may be noted that a Krull domein is @ Gencralized

Krull Domain. In this section we shall use the facts that

'(1) every localization of a GKD is a GKD (2) if x is an
54-eterm1nate over g GKD kK then rR[x] is a GKD. For a detailed
theory of GKD's the reader is referred to [21],[29] ana [9].

As our first step towards the consideration of stability

jroperties of GUFL's we collect some useful facts.

Lemma &. In an HCF domzin a quantum is a prime quantum,
" Proof. Let q be a quantum in an HCF domain R and suppose
x,y|q. We claim that x]y or y]x. For if we suppose On

be contrary that x f y and yfx then R being an HCr domain
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X and y have a highest common factor 4 say, that is x

vy = yid and (XL’ .Yi) = 1|

tors of g

=x].d’
Obviously X, 9 ¥, @re non unit fac-

qQuantum and so by the definition of a quantum there

exist m,n such that q]xm and qjyn, so that xilyf and y, | x° ,

which in view of the HCF property implies that (x,, y,) £ 1

a contradiction and so for all x,y dividing q, x|y or y|x.

Farther we .see that if x|q" for some n then by the HCP

property if x is a non unit then it has a non unit factor 4

common with q. But qidn for some n Dbecause q is a quantum

and it follows that q|x" and that a"|x® , that is a” is a

quantum for all n and it can be shown on the same lines as

above that for each pair u,vlqn, u]v or viu, which is

exactly (1) of Derf, 3« Moreover singe an HCF domain is also

Schreicr every factor of q® for €ach n is primal that is (2)

of Def,3, also holds and q is a prime quantym,

Lemma 9. If R is an HCF domain and S is a multiplicative

set in R then RS is an HCF domain.

Proof. It is well known that if A and B are ideals of an

integral domain R and S is a multiplicative set in R then

(AN B)Rg.:: ARg N BR (et [9] p 34) .

Moreover the necegsary and sufficient condition for an
integral domain R to be an HCKF domain is that the interscc-

tion of every two principal ideals is principal(can be vepi-
ficd easily).

Now let x,y)e RS, where R and 8 are as in the hypothe-
8is. We can write x = ri/si1, y = rz/sz where (rt,sL) =1,and

8L arc units in It
w
Consider xRS n YRy = (ri/si)RS n (PE/SQ)RS,SLbEing

units we. can write the &S as -PlRS n rzns but since

riRg 1 reRg =(r1R N rex)R_ = Lri,ra}ﬂs where [ri,rz] is the
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lcast common aultiple of r,,r, .
But since x,y are arbitrary and for each pair
XRg N YyRg = By RGN TR = [1y,1, ].{{S a principal
ideal, Rg is an HCF domain.

Proposition 10. A quasi local domain with Krull dimension
1 is a valuation domain iff it is an HCF domain.

Proof. If R is a domain as in the hypothesis and is HC:
also, the result follows from fxample 2 and from Lemma 8. The
converse is obvious.

Corollary 6, For every minimal prime ideal P in an HCF

domain g, RP is a rank one valuation domain.

Eyools By Lemma 9 RP is an HCF domain and since P is mini-
mal, RP is a one dimensional quasi local domain and so by
Proposition 10, the result follows.

A simple but worthy of mention fact is recorded as

Proposition 11, If R is an integral domasin in which every
non zero non unit is expressible as a product of a finite
nunber of quanta then the sufficient condition for R to be
a GUrD is that it is an HCF domain.

Proof. By Lemma 8 ;bove, every quantum of R in the hypo-
thesis is a prime quantum. Thus every element x in R (other
n zero or a unit) is expressible as the product of a
inite number of prime quanta.

Let x = py;Pge..P,» Where P; are prime quanta., Then if
Itay) Py ,0.8re not distinct then by (3) of Lemma 1, p,p, is
‘prime quantum similar to p,and Pos and after a finite
ber of steps we are able to express X as a prime quantum
P as the product of a finite number of distinct prime quanta.
> Cor /. An atomic HCr domain is a UKD,

Now we have enough material to be able to prove
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Theorem 12, An integral domain R is & GUFD iff it is an
HCF=GKD.

Proof. Let R be a GUFD then

(1) every non zeroc non unit of R is contained in a finite
number of minimal prime ideals (Cor. 3 and the fact that
every non zero non unit of R is thc prcduect of a finite
number of prime quanta)

(2) for every minimal prime P, R is a valuation domain(
Prop. 4 and Cor., 6)

(3) R=n RP s Where P ranges over all minimal prime ideals
of K.

Proof of{3). Obviously R ¢ N R, where P ranges over mini-
mal primes. Let x € N Kp» then since R is an HCF domain, we
can write x = r/s where (r,s) =1 . Now r/s ¢ RP for every
minimal prime P implies that & ig 2 unit in eaeh RP,con55qu—
ently s is in no minimal pprime ideal and so has no prime
quantum as a factor which in a GUID is possible only if s is
a unit and henge x € R.

The properties (1),(2) and (3) as we have mentioned at
the beginning of this section, show that R is a GKD and with
the help of Prop, 4 we have proved that & GUFD is an HCF-GiD.

Conversely let R be an HCF-GXD, Let X be a non zerc non
unit element ofR R, then by the definition of a GKD, x is con-
tained in a finite number of minimal prime ideals P,,P;, . P,
say. We may assume that therc is no other minimal prime which
contains x. Now since P, are distinct there exists an clement
y € B, such that y ¢ B,. We claim that (x,y) # 1, for other-
wise (X,y) = 1 in = implies that xR N yz = XyR in R and so
xdﬁ N yRR = xyRR in KR (cf Proof of Lemma 9) which further

implies that (x,y) = 1 in B

But RP being a valuation dcmain
] ]
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either x or y is & unit in . i.e, either x or y is not in

B
P, a contradiction,

Let(x,y) =d, and s0 x = x,d, ¥ = y,d where (X ,y,) = 1
and by the previous argument, x, and ¥y, cannot both belong to
B « Let x, be such that x,éB , then x,d ¢ P, implies that
d € P;. Obviously since d is a factor of y, d ¢P and being a
factor of x, d belongs at most to P, ,P;,...,,P,. Further let
Y€ P, such that y,¢ P;, and repeating the above argument we
get 4, = (d,y;) where 4, is a non unit factcr of x which can
belong at most to PL,E;,..., ne And it needs a finite number
of steps to reach the conclusion that x has a non unit factor
qQ say, which is contained in P, and is contained in no other

‘minimal prime ideal.

Now as q ¢ P, and belongs to no other minimal ppimc
ideal, qn is also in no minimal prime ideal other than P,
because if we suppose on the contrary that qne P a minimal
prime other than P, then q ¢ P a contradiction,

rurther let a non unit h|q then since & 3KD is gompletely
integrally closed, there exists a positive integer n such
that han. But R being an HCF domain h™ and q have a highest
ecommon factor d say, then h" = rd s @ =q'd where (r,¢') =1.

Since nan, r is not a unit, and if we assume that g’
is also 2 non u;it then either r or q' is not in P, a contra-
diction and hence q' is a unit. In other words, for every non
unit factor h of q there exists an n such that q|h" i,c. q is

. & guantum and so by Lemma 8, q is a prime quantum.
Now the prime ideal Iq associated to g is obviously con-
tained in P, but P Dbeing minimal Qq = P (cf (2) of Prop. 5)
Finally we know that for every minimal prime P of R

X ¢ P implies that x is in a finite number of minimal primes
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P,P/,...,E and so by the asbove process we can show that
P = Qq. where q' is the prime quantum emerging from the above
process,

It is well known that in a G4D every non zro priie ideal
contains a minimal orime ideal and so we have proved that in
an HCF-GKD every prime idewul contains a minimal prime ideal
associated to a prime quantum which by Proposition 7 is equi-
valent to say that R is a GU:D.

Remark 3. The above procf dces not demonstrate as to how
we can write a non zero non unit x in an HCF-GKD R. This end
may be achieved as follows:

€t § PyyPogeeesPrf be the set of all non zero minimal
prime idezals containing x. #c have shown that x € P; implies
that there exists a prime quantum g, in P such that qq|x.
Suppose that q, does not divide x completely (cf Def. 2),
then R being a GKD, is completely integrally closed and so
there is an n such that qnfx. Now by the HCPF property
Q = (ql',x) divides x completecly, Similarly proceeding for
Pzjy.s+Pr We conclude that x = @f{qgs...qf and this factorie
zation is obviously uniquei

It is well known that if R is a GKD and S is a multipli-
cative set in R then 2o is a GuD (ef{9] p 513). Further by
Lemma 9, if r is an HCF domain and § in R 1s multiplicative

then R, is an HCF domain and so using the above theorem we

S
can prove the

Proposition 13. If R is a GUr¥D and S is a multiplicative

set in x then n. is a GUFD,

S

rurther if ik is & GKD and x is an indeterminate over &
then R[x] is a GKD (|9] p. 517)and it is well known that if
R is an HCF domain then so is R[{x]. Hence follows the

Proposition 14. If R is a GUFD and x is an indeterminate
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over R then k[x] is a GUFD.

We end this section with an application of the theory
developed in the previous sections and state the

Proposition 15, Let R be an integral domain such that for
every non zero non unit x in =

228 0 G N een NQp
where ¢ are primary ideals such that yQ 1is a minimal prime
ideal, then r is a GU¥FD if it is an HCF domain.

Proof. (1) from the hypothesis it follows that every non
zero non unit of X is contained in a finite number of mini-
mal prime ideals of R.

(2) R being an HCKF ring R, 1s a valuation domain for every
non zero minimal prime ideal P of R.

(3) The proof that R = n Rp follows the same lines as the
proof of éﬁgﬁi 12.

From (1),(2) and (3) above it follows that R is an HCF
GKD and hence is a GUFD,

5. Ideal Theory.

This section includes a brief account of the behaviour
of minimal ﬁ?ime ideals of a GU¥D, We then pass on to the
ideal theory of GKD's which are Prufer(Bezout), the primary
deccmposition being our main concern. %e shall find that the
primary decomposition of every non zero ideal in a Prufer GED
is unique, in other words a Prifer GKD is a W-ring. At the
end of the section we show that the necessary and sufficient
condition for a Prifer domzin to be a Prufer GKD is that its
non zero ideals have primary decompositions.

For thc sake of reference we quote the definition and
some properties of #-rings from [10].

Definition . Aring R is a W-ring if each ideal of R may
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be uniquely represented as an intersection of finitely many
primary ideals.

A W=ring R is called a d*-ring if each ideal of R con-
tains a power of its radical.

Theorem A( [10] Th. 1). A ring is a W-ring iff it is a
finite direct sum of primary rings and one dimensional integ-
ral domain& in which every non zero ideal is contained in
only finitely many maximzl idesls.

Theorem B ({10] Th.2). A W-ring is a W*-ring iff each non
zero ldeal cf R contains a product of non zero prime ideals,

Theorem C ([10] Th. 4). If a {*-domain is strongly( -
completcly) integrally c¢losed then it is s Dedekind domain,

tirst we take up the bchaviour of minimal prime ideals
in GU¥D's, We note that in the case of UFD's it is well known
that an integral domain R is a UFD iff EVEry non zero prime
ideal cof & contains a principal(non zero) prime, and.that an
analogue of thig result appears in this chapter as Prop. 7.
And to clarify the structure of minimal prime ideals of GUsD's
still further we prove the

Theorem 16. If P is s minimal prime ideal in a GUFD R, then
P is either priﬁéigal or idempoctent.

Proof. Let P be a minimal prime ideal in & GUFD 2 then by
(2) of Proposition 5, P = Qq for a prime quantum g.

Suppose that P2 £ P and 1lét x e P - Pz. Since P = @
(x,0) #1 , obviously qy= (x,q) is contained in P snd no
other minimal prime idezal. We claim that gy is an atom.Tor
supposing on the contrsry that 4= Q4G5 Where gg,qgare both
non units. Since g € P and is in no other minimal prime ideal
every non unit factor of g is in P. This implies that

d2s35€ P and so qu= qzqasPd l.8. X =cng@sic PZ, a contradic
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and hence ¢ is an atom.

Now since a GUFD is an HCF domain and it is well known
that an atom in an HC¥ domain is a prime(cf.e.g. [5]),q R is
a orime ideal contained in P,that is g & =P ((2) of Prop. 5)

To study anocther feature of GUrD's, let q be a prime
quantum and let abeqi , that is q|ab. By Definition 3,

Q= 99 such that g, |a and g |b, that is a = 8,q, ,b = b, g
say. Obviously if b§qk, g is a non unit and so there is a
positive integer m(say) such that q]q? i.e. g a?qf: am, that
is 1f bkqr, acqr. In other words gR is primary. Further we
note that

JAR = | x| (x,q) #1 } = Qq » which in a GUFD, is
the minimal prime ideal associated to q,

Now let x be a non zero mon unit in a GUFD R then

X = Q1Qz44eQn s Where Qi are distinct prime quanta
can be written as xk = A%yt JuR = @R N gk N .., Ngn R
and a consideration of/ﬁfﬁ shows that xr has a unique primary
decomposition, and soc we have proved the

Theorem 17, In a GUzD, €very non zero prineipal ideal has

a primary decomposition xk = PyN PeN ... NP, where each P;

is primary to a~minimal non zero prime idecsal and is principal.

It may be pointed out that the above theorem is closely
related to Prop. 15. In connection to these and specially as
& corollary to Prop. 15, we state

Corollary 7. If in an HCF domain R every principal idesl
is primary then R is = rank one valuation ring.

Proof, Let x,y be any" two ncn zerc non units of R, Accoprd-
ing to the hypothesis, xR,yR and XyR are primary, Obvi_usly
since X and y are non units, x,y ¢ xyR and conscquently

there exist m znd n sueh that xm,yn e XYR-1sa, xy]xm,yn. Now
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xy|x®,y™ implies that len-1 and y|x® 'i.e¢. every non zero .
non unit of R is a quantum and hence a prime quantum because
of the HCF property and hence R is a rank one valuation domain.

To proceed further we need some more definitions,

An integral domain & in which every finitely generated
ideal is prineipal(invertible) is called a Bezout(Priifer)
domain. It is well known that a Priifer domain which is also
an HCkK domain is a Bezout domain and equally well known is
the fact that an integral domain R is Ppifer iff RP is a
valuation domain for each prime ideal P (ef e¢.z. [5]). A gene-
ralized srull domain which is also Prufer(Bezout) will be

called a Prufer(Bezouyt) GKD .

As no convegient and to the point refcrence is available

£ R
we include

{

Lemma 18. A G£D R is a Prifer GiD iff every non zero prime
ideal of R is maximal.

Proof. Let R be & Prifer GKD and let P be a non zero prime
ideal in R, then R, is a GKD (19] p. 513). But the Priifer
condition implies that RP is a valuation domain. If P is not
minimal then EP is 2 valuation domain of rank greater than 1,
which implies that there exist non units in "5 which are con-
tained in no minimal prime ideals, a contradictiocn to the
fact that RP is a GKD and hence implying that every non zero
prime ideal of R is minimsl. The converse is obvious.

Now a GUrD is an HCF-GuD and so for a GUFD to be 3ezout
all we need to state is

Corollary 8. a GUFD R is a Bezout GUFD(3ezout GuD) iff
every non zero prime idecal of R is maximal.

Gilmer and Ohm in [18] prove that a UFD is a PID iff

it has the Q.R-property, where an integral domain R is said
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to have the G.R-property if every over-ring(ring between x
and its quotient field K) is a quotient ring. In a similar
way it can be proved that a GUFD is a Bezout GKD iff it has
the Q.R-property, but a more general result is in order and
we state

Prooosition 19. A Schreier domain & is a Bezout domain @ &
it has the O.R=-property.

Proof., If R has the (.RrR property, it is a Prifer domain(
(9] p. 319) and R being Schreicr alsc is Bezout(cf [5]). Con-
versely it is well known that a Bezout ring has the 0.k pro-
perty (cf e.g.15]).

It is obvious that a Bezout GuD(Prifer Guu) is a N= do-
mgin and S0 every non zero ideal of a Prufer GuD has a unique
p;imary decomposition, The above stateda fact makes a Prufer(
Bezout )GuD very similar to a Dedekind(Principal ideal) domain.
In fact the only point of difference is that Prufer(Bezout)
GKD's admit idempotent ideals while Dedekind domains(PID's)
do not. To establish this fact we prove

Proposition 20, A Prufer GoD R is a Dedekind domain iff
each non zero prime idesl of R is non idempotent.

Proof. If R is a Dedekind domain the result is obvious.
Conversely let R be a Prufer GKD such that every non zero
prime ideal of k is non idempotent. Then if P is a non zero
prime ideal of R every P-primary idezl contuains a power of
P(cf [28]) and so every non zero ideal of R contains a
product of a finite number of maximal ideals,that is < is a
#*- domain (cf Th. B) but since « is & GKL and hence complete-
ly integrally closed it is a Dedekind domain by Theorem C.

A Bezout GuD being a GUFD, we c&n stote as a corollary

. to Theoren 16 the
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Proposition 21. In a Bezout GKD a prime ideal is either
principal or idempotent.

Finally to study the primary decomposition in Prufer
domains we proceed as follows.

Let R be an integral domain, an ideal P is said to be an
S-ideal in k if (1) P is prime (2) the set of P-primary ideals
is linearly ordered (3) the intersection of all the P-primary
ideals is a prime ideal M (4) M contains cach prime idcal
properly contained in P. An intcgral domain R is said to be
an S-domain if every prime ideal of R is an S-ideal (cf [13]
pp. 249-250 ).

According to Cor. 2.5 of [13],( ¢ = proper centainnent)

" If D is an S-domain and @ ,%; are primary ideals for P ,P,
respectively, where Pr C Pz, then @ ¢ & M (8)

It is easy to establish that a Priufer domain is an
S~domain and that(S) ean be proved for a Prifer domain. But
for the convenience of reference we adopt (S) for Prifer
domains and use it to prove

Theorem 22. If a non zero ideal A in a Prilifer domain R has
a reduced primary decomposition

A=P NP N (4001 By =—memrmmmmmmmmme——o (a)

then (a) is unique.

Proof. Letjrad B = Q (i=1,2,0e.5n), we claim that if
(a) is reduced then

(1) & are incomparable under inclusion (i = 1,...,0)

(2) no two P.,2 1 # J are contained in the same prime
ideal 9.

First let 1 € Qj for some i £ j, then if Q4 = Q;;
BB € P or Pj € R because cach of the ¢ is an S—-ideal and
this contradicts the assumption that (a) is reduced. lFurther

if @ S @ then by (S8) above P < Pjwhich again contradicts
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the assumption that (a) ie reduced and hence establishes (1).

For (2) let P ,P, € @ a prime ideal then Rad P, , Rad P; ¢ Q.

But since R is g Prufer domain ﬂm is & valustion domain and

80 Rad P, ¢ kad P; or Rad Fj ¢ Rad P, this contradicts (1)

and hence establishes (2). Now let
A:P; I‘-l Pa’lﬂ LY npn;

be another primary decomposition of A and since every primary

decomposition can be reduced, suppose that (b) is reduced and

let Rad P} = Q! (j = Yoo e ti)

We note that the above claim holds for (b)

as well and that

(P NP N ... nNn Ph)JRy= (P NBIA ... N 9,;1)'30‘ s{1=1,...n)
BL L

can be written as
%RQ‘:Q HaRQb .- s e iq Pnli':l,‘: Pfh’.;;i'n s e r] Pn;_"il.p‘ __________ (C;\

(ef (9] p 34 )

the above clainm there exists only one prima

In view of

oLy
ideal P, ¢ Qi in the decomposition (&) and so (c) can be
written as

n
kgi Pkn',;‘iz P{R,ﬁﬂ P;:\"._,ﬁ'ﬂ wow T P,,,:H_)L ------ (a)
Now on the right hand side of (d), no two of P] are in

Q; and since the left hand side is a proper ideal of Rthhere
must at least one of P} be contained in Q% and thus

PLRQL = PjRQL, but since P; is A, —-primary snd R is a
Prufer domain (cf [28])

co N ER)R,, =(Py 0 Eg 1) wnn 't Pp il

where Qj = Rad P!, we find that there exists sone primary
ideal P, in the decomposition (a) such that
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Combining (f) and (g), Px ¢ P; ¢ P and recalling that
(a) is reduced P,= P, = P; . Hence m = n and the primary
decomposition is unique.
And 11 that interests us at present may e stated as

Corollary 9. A Prufer(Bezout) domain R is a Priufer(3ezout)
GKD iff every ideal cof R has a primary deccmposition.

Proof. If R is a Prufer domain and every idezal of R has a
primary decompcesition then these decompositions being unique
by the above theorem show that x is & W-domain and a WN-domain
which is Prufer is a Prifer GiD.

Conversely in a Prufer GKD every non zero prime ideal 1is
maximal und every ideal is contained in a finite number ci
max;ﬁal ideals, and this is a condition for a domain to be a

|
N-domain.
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CHAPTER 2
SEMIRIGID DOMAINS
0. Introduction.

In the theory of Unique Factorization the concept of a
prime element is basic. Similarly it is clear that a
discrete rank one valuation domain is the simplest UFD ( in
the sense that it has only one prime and its associates). In
the previous chapter we replaced the concept of prime ele-
sent by a nore gencral concept ;primc guantum which resulted
in the replacement of a discrete rank one valuation domain
by a rank one valuation domain as the simplest GU:D(every
non zero non unit in a rank one valuation domain is a prime
qu%ntum similar to any other). But the generalization of
Unique lactorization in the sabove mentioned fashion gives
rise to the following

Question . Is it possible to work out a theory of Unique
Factorization in which a general valuation domain replaces a
rank one valuation domain 7

We hote that in a general valuation domain R; no non
zero non unit x can be expressed as a product of two co-
prime non units. Moreover for all v,u|x in R, u|v or viu. In
other words the lattice L(xs,R) is a chain for each ncn zero
element x in & valuation domain R. According to [6] p. 129
.an element x in an integral domain R is called rigid if
L(xR,r) is & chain, and an integral domain R with all non

zero elements rigid is called a rigid domain (cf [6] o 129).

It can be easily seen that a commutative valuation domain is
a rigid domain.
An obvious programme is;, that we should consider an

integral domucin in which every non zero non unit element is
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eéxpressible as the product of a finite number of mutually

Co=prime rigid non units. For & clearer picture of factori-

zation into rigid non units we consider the following

wxample 1. Let V be = valuation domain, x an

over V and let R = V[x].

Pick a general non zero non unit element
n .
y =232 vwx 5 Ve V.
Since V is an HCF domain, we can calculate the HCF, 4 of

n i
VosViseee,Vnand s0 y = d( 3 v'x); where { v} have no non
o

unit common factor( in fact one of them is a unit),

i

In the factorization of y' v{x~ , every non unit

O M3

" "

. L2 \ : S _

element has positive degree in x and hence 3 v{x is a pro-
0

5
duct of atgms. Moreover since, V is an HCF domain and so is

Vix], every atom in Vix] is a prime (ef [5]) and thus

n
g vixt = pfip§2...p§5; (QL,pJ) =1 fori# j . That is
J

. E & a ” . ;
= dp;*Da®...058% 5 (d,p) = 1 b = 35855 0008)

(Buspj) =1 for i # § ——mmm (A)
Obviously each prime power is a rigid non unit and 4
/
being a member of V is rigid and so if Yy is non unit, it is

the product of a finite number of mutually co-prime rigid

non units. It is also cbvious that the factorization in the

€xpression (A) is unigque up to associates of the rigid non

units. And since,y is arbitrary we conclude that every non

ZSTO nom unit element in R = V[x] is uniquely expressible as

the product of a finite number of mutually co-prime rigid

elements.
Here we note that while an atom is rigid, a quantum

according to its definition, need not be » For example,

in a one dimensional quasi-local domain E€Very non zerc non

unit element is a quantum but a one dimensional quasi-local

indeterminate
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domain need not be a valuation domain and to show that there
does exist at least one, one dimensional gquasi-local domain
which is not a valuation domain we take up the following

rxample 2.(ef |5] p. 262). Let G be the additive semigroup
uf all rationals > O and reals > 1, form the semigroup
algebra F[G) and let F(G) be the ring obtained by adjoining
inverses of all elements with non zero constant term. Ve can
write
o
F(a) = § Sgxt o > 0 if rational and o > 1 if real
and u, are units }
No two elements of F(G) are co-prime and it can be veri-
fied that one divides a power of the other and that F(G) is
a on@xdimensional quasi-local domain, because if (a),(B)e G
where B >a then there exists a positive integer n such that
no > +1 (a,8 being real numbers). But ¥(G) is not a
valuation domain, since ;&X x'*” where yis an irrational
number less than 1/2.
further it can be verified that a prime quantum is a
‘rigid non unit while a rigid non unit may not be a prime
quantum, for example every non zero non unit in a rank two
valuation domain R is rigid, while if P is the maximal ideal
of R and Q is the minimal non zero prime ideal then every
integral power of x € P -Q will divide every element of Q,
that is elements of 9 do not satisfy the condition of being
a quantum and hence are not prime quanta.
In the case of prime quanta it was easy to develop a
theory of factorization on classical lines, as we did in the
previous chapter, but in the case of rigid elements it locks

not only difficult but also unnecessary to go through all

those details. So we shall consider the properties of rigid
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non units in Hep domains and will investigate the structure

call Semirigig Lomains.

This chapper Consists ¢f only two sections. In the
first section we formally define g rigid element and discuss
its pProperties in an HCr domain, while in the second section

We introduce the concept of a semirigig €lement - the pro-

duct of g finite number of matually CO-prime rigid non units
and prove that if in an HC¥ domain an element can be
eXpressed as the product of g finite numbepr of mutually co-
pn&me rigid non units then this factorization is unique up
to ésséciates of the rigid non units and up to order. And

from this we derive the definition of a Semirigid Domain,

Moreover in the Same section we give, what may be called the

local characterization of a_Semirigid Domain, in the form of
Theoren 2; which €ventually induces the definition of an~-

other geéneralization of £rull domains,

; % Preliminary Definitions and Basic Results,

Definition 1. A non zero element r in a commutative integ-

factor of g rigid non unit is slso rigid ., we Proceed to
investigatc the Properties of rigid non units in an HCF do-
main ang Prove the

Lewmma 1. In an HCr domain p the following are valid,
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(2) Let r,s be any two non co-prime rigid non units of R
their product rs is again a rigid non unit ( obviously non

co-prime tc both r ang s).

(3) To each rigid non unit r ¢ R, there is associated a |

prime ideal P(r) = §{ x ¢ R | x is non co-prime to r }.

(4) Let r,s be two rigid non units in R then P(r) = P(s)
iff r,s are non Co=-prime

(5) If r is a rigid non unit in R ang P(r) is the prinme

ideal associated to p then the localization RP(P) is a valua- ;
tion domain.

Proof. Let (r,s) = g e e 1 )2 0 r;d , s = s d where

(ry,8) = 1. If either of Ty 48,18 a unit, (1) holds and we

have nothing to prove,

S0 we suppose on the contrary that
~ Ty»s8

arc both non units , By the definition of a rigid ele-

ment r, [d or d|r, -
and s, |d or d|s,

Now if r, |d and d|s, ; r

1]8, a contradiction ———-—- (i)
and if r,and 8y

divide d which being a factor of a rigid
element is it self rigid ang hence r, |s;, or s, |r,

S cobtradiction —=—tr—rr—emmos (ii)

Further if d|r; and s, |d then 8, |ry a contradiction —==(iii)
Finally if 4|

ry and d |s, then again (ry,5,) £ 1
& contradiection

To sum up we get contradiction as & result in all the

four eases which arise from the assumption that rfs and sfr
and this confirms the truth =" ) (8

k2).let 5. =
Let x

rs, where r,s are non Co-prime rigid eleimcnts.

sJ be any pair of factors of z and Suppose that xfy and

yfx ( in other words we suppose that z is not a rigid ele

ment). Now let (x,y) = d, where x = x,4d, Y = yid and
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(x,5y1) = 1 and obviously X, ,y,; are both non units . We notc
that xilx and x]z = rs, therefore x&]rs s, and by the HCEF pro-
perty of R,

x = x'x" where x'|r and x"|s
Similarly y= y'y" , where y'|r and y'|s A )
Further y'|y, ,x'|x, and (x,,y,) = 1 implies that (x',y') = 1.
But since r is a rigid element x'|y' or y'|x' which is
possible only if cone of x',y' is a unit
Similarly we conclude that either of x',y" is a unit--(f).
Let x' be a unit , then since x, is a non unit and
X =x'x" , x" is a non unit and is an associate of x, but
then y" is a unit (by (f)). Again since y, is a non unit y'
. is a unit and so we conclude that
y'|r where y' is an associate of y, and
x"|s where x" is an associate of x,.

I.e. there exist two co-prime elements Xx,,y,such that y,|r
and xlls. But since r and s are non co-prime rigid elements
r|s or s|r by (1) above. And in both cases x, and y, become
P factors of a rigid non unit (e.g. X, ¥, are factors of s if
,gls because y, |r and r|s i.e. ¥, |s while x, |s is assumed)but
‘this being in contradiction with (x,,y,) = 1 implies that
'sze assumption xly and yXx is wrong and z is a rigid non unit.
BES) fet P(r) = | xex (x,r) # 14,
'  Because of (1) above, if x and y are non co-prime to r
Qﬁ31f (x,r) = 4, (y,r) = 4 then, being factors of a rigid

Pbunit djd, or d,|d . Consequently if d,|d then 4,|X,y and

flarly if d|d, , d|x+y. In other words if

8). Horeover if x ¢ P(r) then
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(i) £ 1 i.e. if xy € P(r) then x eP(r) or y € P(r) and
this establishes (3).

(4) If P(r) = P(s) then since r € P(r) , (r,s) # 1.

Conversely let (r,s) #1 thenby (1), r|ls or s|r . If

r|s then (x,r) #Z 1 implies that (x,s) # 1, that is
P(r) ¢ P(s). If on the other hand (x,8) #1 then by the HCF
property x = x;,8, and 8 = 8, 8,, where (%X,,s8;) = 1. Since
sils, s, is a rigid element which is non co-prime to r(since
we have assumed that r|s) that is (x,s) # 1 implies that
(x,r) #1 i.e. P(8) ¢ P(r) and combining the two inclusion
relations the result follows.

(5) Since r is an HCF domain, Rp(py 18 an HCF domain (ef
Lemma 9, Ch. 1). To prove that a quasi-local HCF domain (
RP(f) in this case) is a valuation domain, all we have to

show is that no two non units of this domain ( R )) are

P(r
co-prime. Suppose on the contrary that there exist x,y in
P(r)RP(r), such that (x,y) = 1 and let

X =u/vs ; ¥ = uz/ve ( we can assume that (u,vi)=1).

Now since v4,Ve are units in RP(r) we get (ug,uz) = 1

in ﬁP(P)’ that is (uy,u;) ¢ P(r)RP(P). But since we assuned
that x,y are non units in RP(r)’ uy sugz € P(r) and so

(w,r) =r, (i =1,2.) are such that P, # 1 that is

d = (uy,uz) is a multiple of rior of r: in Rk (since ri are
factors of a rigid element r ) and thus (us,us) = d € P(r)
i.e. uy,u2 are non co-prime in RP(P} a contradiction estab-

lishing that no two non units in LP(P) arc co-prime which

implies the result.

2. Semirigid Domains. Sa b

Using Lemma 1, we first prove the
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Theorem 1. Let R be an HCF domain and suppose that an
element x € R, can be expressed as the product of a finite
number of mutually co-prime rigid non units then this
factorization is unique up to associates of the rigid non
units and up to their order.
Proof. Let R be an HCF domain and let x € R be such that
X =PrTyeeely 3 n rigid , (v, ,r;) =1 for i £ j.
Purther suppose that
X = 8,8 .+.5, ; 5 rigid(non unit) (8 y8;) =1, for i # j.
Since s, |x, by the HCF property -
81= 811813--48,, ; Where s, [r, and since | ritiz
ape co-prime, at most one of S;_ say s, 1s a non unit andz
80 sllrk for some K ( = 1,25000,0.),
Reversing the process we take r, |x and so
Tk = PxyTkgeelyp where B |s, (4 = 1,2,4..,n) .
By the above argument there exists an 8; such that rk[sj and
- obviously s; is an associate of 8,, for if not so (s,,s;)=1
while s, |r, and Iy |8; that is s, |s; a contradiction estab-
lishing the fact that 8, 1s an associate of r, .
Repeating the above process for 82585540458, we get
m =n &and each S{ associate of some r;. In other words the
factorization x = ryTyeeely 18 unique up to associates of r;
and up to a suitable permutzation of the rigid non units.
Je can call the non unit of Theorem 1, a semirigid ele-
ment and based on this notion we make the following

Definition 2. An HCF domain in which every non zero non

unit is semirigid will be called a Semirigid Domain,

wWe note that in an HCr domain a rigid ncn unit generalizes
. prime quantum ( since a prime quantum satisfies the pro-

riies of a g;g%d non unit) and it is easy to see that a
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~Semirigid Domain is a generalization of a GUFD. And to dis-
play another feature of Semirigid Domains we prove the
following

Theorem 2.Let R be a Semirigid Domain, then there exists
a family @ = { B4} (x € I an index set) of prime ideals
of R such-that

(1) Ry, 18 a valuation domain for each o € I

(2) each non zero non unit x € R is contained in only a
finite number of members of ¢

(3) Pﬁiﬂ Pazdoes not contain a non zero prime ideal if
oy ‘Eag s e I

L] o4 € I.
PC(

froof . By part(3) of Lemma 1, in an HCF domain R, corres-

\T(Ll) R&NR

ponding to each rigid non unit r, there exists a prime ideal
P(r) = { xe R| (x,r) #£1 | associated to r, and by (4) of
Lemma 1, P(r) = P(s) iff s is a rigid ncn unit n-n co~prime
to r.

Now let T' be a set of mutually co-prime rigid non units
¥y of the given Semirigid domain R, where o ¢ I an index sct.
According to the above observation we have a family of prime

ideals @

! P(ra)( = P, 34 r. €l ;ac I }, and by part

(5) of Lemma 1, ﬂPa = H?(Pd) is a vealuation domain for each

@ € I, that is (1) holds for the selected family @ .

Since k is a Semirigid Domain, each non zero non unit
being a product of a finite number of mutually co-prime rigid
non units is a member of at most a finite number of elements
of ¢ , that is (2) also holds for § .

Now let Q be a non zero prime ideal contained in the
" N P% = P(rai) N P(-r%)_ 4 (Pa.t # Paa ) and
let x € Q. Then since x is Bemiriq%g ,,-

intersection Fh
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X = X X3.0.X5, Where X, are mutually co-prime rigid non
units. Since x ¢ P(ra‘); one of the x (i = 1,2,...8) say > 5}

is non co-prime to r s Also since x ¢ P(q} ) one of the X;
2

1

( 1 =2,3,..0,8) hay X;1s non co-prime to r S0 that
=2

X = X, X8 ; where a ¢ P(rai) i =1,2 (because (a,x )=1 é

which is €quivalent to saying that (a,ra') =1). i
L

Since we assuae that Q is prime and since a £ P(ra.)
L
a g9, and so ;%8 =x€ Q implies that x,x; € 3, that is
X, € §0or x € 3 . In other words X € P(rui) N P(qua) or
- sl P(ra )N P(Pa ) that is x, or x, is a rigid non unit f
1 2

non co-prime to two co-prime rigid non units ( since ay;# as)

a contradiction that confirms that (3) holds for ¢ .

\\ To prove (4) for & 1let R""'="N RP s 0 € I, y
o

and suppose that x = w/v € R', then since R is an HC¥ domain F
We can assume that (u,v) = 1, but this implies that v is a !
unit in each RP s that is v cannot be expressed as a product i
of rigid non un?ts and we wre fourced to eonclude that v is a §
unit and x € R which confirms that |

K =N RP 3o e I, :
(04 o Vl‘w fc;;i P‘-’)
The above theorem,ebwiows®y is a local characterization |

of Semirigid Domains, and, gives us another generalization of
£Lrull domains. Being short of a suitable name for these
integral domains, we call them *GuaD's,

befinition 3. an integral domain R will be called a #@KD

if there exists a family ¢ = | B of prime ideals cof

ja € I

|
|

R such that

#1- €Very non zero non unit element of R is contained in
only a finite number of members of ¢ ,

*# 2- for each Pa 3% e I, RP is a valuation domain
o
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#3- for each paipr P ,Eb € ¢,Pq N P, contains a non ZEero

B

o
prime ideal iff Ea = B *

ael a

|
Tt 18 not very difficult to prove that ap HCF- *GKD is !
a Semirigid Domain, but since there does €xist yet another |

gencralization of Krull domains, namely Rings of Krull Type(

cf |21]), which also generalizes a *GuD, we postpone the
proof till we are able to consider the factorization of an
arbitrary non Z€ro non unit in an HCF Ring of Krull Type. i
Briefly a ring of Krull type is an integral domain with a
— family & = | P, !‘EI of prime ideals, for which #1,%2 ang =)
hold. But since the rings of Krull type are not much known
We need to give an introduction to the theory of rings of
Krull type, while it seems difficult to inject it into the
discussion of Semirigid Domains, and so we close this chap~-
ter with the remark that *3 of Definition 3, holds automatic-

ally in the case of Krull domains and of Generalized Krull

Lrull domains.,
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CHAPTER 3
UNIQUE REPRESENTATION DOMAINS
O. Introduction.

e concluded our previous chapter with the local
characterization of Semirigid Domains (cf Th. 2 Ch. 2) which
shows ‘that g Semirigid Domain is = generalization of a Krull
domain ( is g ¥GKD). The fact that the two generalizations
of UFD's we have worked out are also generalizations of Krull
domains leads uys to think that if there exists yet another
generalization R of Lrull domains, which is also an HQF
domain, then it is possible that the factorization of non
.zeka non units of R should exhibit some 1ntelesting pattern .
But we have to be selective in choosing g particular gene-
ralization of Krull domains for an €Xamination ; because
arbitrary generalizations of arull domains can range over an
uncontrolably large family of integral domains, which may
be irrelevant too. rop example an integrally closed domain
generalizes a Krull domain in the sense that a Krull domain
is integrally cloused, but choosing an HCF integrally closeq
domain is absurd, because an HCF domain is already integrally
closed (ef [23] DP. 33 ). We did mention at the end of the
last chapter that a ring of Krull type satisfies *1 »¥2 and =4
of Def. 3 , in vicw of this, a ring of Xrull type seems to be
VEry near to the generalizations of Krull domains we could
achieve through a generalization of the concept of Unigue
factorization,

Thus it looks worth while to consider the factorization
of a non zero non unit in an HCF ring of Krull type and to
set up a more general theory if some pattern shows up. And

our first step towards this end should be to give an
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introduction to the theory of the rings of Krull type because
these rings are not very widely known. Section 1, of this
chapter includes an introduction to the theory of rings of
Krull type. Briefly for the sake of completeness of the
present section we note that

(1) if R is an integral domain, K its field of fractions
and 8 an integral domain such that =& ¢ Sc K then S is
called an overring of R,

(2) if R is an integral domain and S a valuation overring

of R then S is called an essential valuation overring of R

ir S = RP for some prime ideal P in R,
(3) an integral domain R is called gssential if it can be
expfessed a8 an intersection of essential valuation domains
(L) an essential integral domain R = N RP ;o€ I
is a ring of Krull type, if for each non zero non unit x in
R, x i8 a non unit in only a finite number of RP o € I,
If P is a prime ideal such that RP is a valuation

domain, we shall call P, a valued prime, and every prime

ideal Q such that 0 # Q ¢ P, will be called a subvalued prime
in P. In section 2, we show that if P is a valued prime and
O # x € P then there exists a unique minimal subvalued prime
which is minimal with respect to containing x such that
X € Q¢ P, and this we shall call the minimal subvalued prime
of x in P. In the same section we show that if an element p
in an HCF ring of Krull type has only one ainimal subv.lued
primc webat... . all the valued primes containing x then
P is such that if p = p,p,;p; non units then (p,sp,) #1 ana
there exists a pocitive integer n such that pilpg cr 921P§¢
Such an element will be called a backet. Finally we shall

prove in the same section that a non 2€ro non unit in an HCF
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ring of Krull type is expressible as the product of a finite !
number of mutually co-prime packets.

In section 3, we show with the help of a counter example
that an HCF domain in which every non zero non unit can be
expressed as the product of a finite number of mutually co-
prime'packeta may not be a ring of Krull type. We shall call .
the above mentioned integral domains, Unique Representation E
Domains (URD's). After the counter example we proceed to
investigate the conditions under which an HCF domain should

become a URD. This gives rise to the concept of

L TR

*-e¢ssential domains which can be explained as follows.

vaet R be an essential domain and let { B, Je ; be the

family of valued primes of R such that R = f]RP ; ae I,
o

and that no two members of | Ra } are comparable w.r.t.
a e I

inclusion, then R is a *-essential domain if every non zero
non unit of R has a finite number of minimal subvalued primes
which are contained in the members of | P& §{. Finally we
shall prove that a * -essential domain is a URD iff it is an
HCF domain.

In section 4, we consider the stability properties of
URD's under the operations of adjoining indeterminates and
localization. We shall also prove that an integral domain R
is a URD iff R + xK[x] is a URD, where K is the field cf
fractions of R and x is an indeterminate over R. At the end
of section 4, we establish that the concepts of GUFD, Semi-
rigid Domain , HCF ring of Xrull type and URD signify dis-
tinct classes of integral domains, out of a pair of which,

one generalizes the other.

Our procedure of going from one

ther generaliz
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distinct treatment of HCF rings of Krull type and of URD's.
But we have adopted this approach because it is easier
going from HCF rings of Krull type to URD's in the sense
that we get the concept of a packet using the strict defi-
nition of the rings of Krull type, which it would have been

difficult to visualize in the general case.

1. Rings of Krull Type.
Griffin in [21] introduced the notion of a ring of Krull
type as a special case of the rings of finite character. The
basic notion in the theory of rings of finite character is

that of a yaluation v over a field K. 4nd for the sake of

;vgompleteness we include the
Definition 1. Let G be a totally ordered group under
addition and let G*¥ = G U | « } be the group including the
symbol « with the properties
B 40 = + =0 +xw=cx ; gE€Gab
then the function v:iK — G* such that
(1) v(a) = iff a = 0
(2) v(xy) = v(x) + v(¥)
(3) v(zx + y) 2 min( v(x),v(y) )
is called a valuation of K (or over K).
If v is a valuation ¢f a field K, then the set
R, = { xeK | v(x) > 0} is a valuation domain and is

called the valuation ring of v.

Let {l be a family of valuations of a field K and let
®-=1N R, 3 Ve fl then k is called the ring determined by
the family § . Moreover the family Q of valuations of X is

said to be of finite character if for each x € K the set

{ we N | wx) #Z0f is finite.
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Definition 2. Let 9 be a family of valuations of a fielda
K and let I be of finite character then the ring determined

by (1 is called a ring of finite character.

Now let R be a ring determined by a family O of valu~
ations, let Rv be a valuation ring of v € 0 s and let Mv be
the maximal ideal of R sthen the prime ideal R N M, = Z(v)

is called the centre of v on R. If the localization R ) is

Z(v
equal to R, we call v an gssential valuation. And according

to Griffin, a ring R of finite character is called a ring of
Krull type if it has a defining family of valuations consis-
ting of essential valuations only.

: Equivalently we can define a ring of Krull type as
_f&iibws

Definition 3. An integral domain R is said to be a ring of

Krull type if, there exists a family of prime ideals

1P 3 such that

a ‘ae I

(1) R, 1is a valuation domain for each @ ¢ I

P
(e
(2) every non zero non unit element of R is contained in
only a finite number of members of § Py & : ¥
(3) k. =n H A |
RP(X

We shall adopt Definition Js as the standard definition

of a ring of Krull type.!fhe family Pa jae [ can be
assumed to be such that Pa,Pﬁare incomparable w.r.t.
inclusion for each a#f € I Because if P c P st B DR and
a B Pﬁ P
so RP N RP = RP i.e. Pﬁ can be dropped from the family.
o B a
Moreover if there exists a chain of prime ideals { E%’] = £

in iPaj i.e.Pyc Pé or 96 c nyor each pair P sPg € C then

Y
since the unions and intersections of all the elements of C
exist we can rcplace the elements of C by P=24U.9,.3¢ C.

In other words we can assume that | - { consists of the
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largest possible prime ideals for which, RP is a valuation
o

domain for each a € I. Thus by the family of valued primes

defining a ring R of Krull type we shall in future mean the

familyl%x } consisting of the largest valued primes of R. ./e
recall that

Definition 4. An integral domain R is called a Krull
domain if

(1) every non zero non unit element of R is contained in
only a finite number of minimal prime ideals of R

(2) R, is a discrete rank one valuation ring for each
minimal (ncn zero ) prime ideal P of R

(3) R = n R, where P ranges over all the minimal prime
ideals of R.

Comparing the Definitions 3 and 4, we infer that a Krull
domain is a ring of Krull type with the difference that the
defining family of prime ideals of a Krull domain consists
only of minimal non zero prime ideals, and of course that
RP is a discrete for each P in the defining family. Similar-
ly recalling Def. 3 of Chapter 2, we infer that a *GKD is
also a ring of Krull type. Thus if £ denotes ," Form a
special case of " then
Krull domains £ GiD's < #*Gub's < Rings of Krull type.

The examples given or mentioned at the end of section 4 of
this chapter ensure that the above is a chain of distinct
clacses of integral dcmains.

There may be many further .geheralizations of a ring of
Krull type but we shall restrict our attention to essential
domains and their special case to which we have given the

name ¥-—-essential domains.
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2. Factorization in an HCF ring of Krull type.

In this section we first take up a non zero non unit
element in an HCF ring of Krull type and prove a sequence of
lemmas to establish the notions in terms of which we can
describe its factorization. In brief we shall first derive
éhe notion of a packet as we mentioned before and then Prove
that in an HCF ring of Krull type a non zero non unit is ex-
pressible as the product of a finite number of mutually co-
prime packets.

Let R be a ring of Krull type and let &= | Pa]ae 1 be

the family of valued primes defining R. We start by showing

that if O # x € P ( € ¢ ) then there exists a unique prime

ideal Q, minimal subject to the property x ¢ Q e
To achieve the above mentioned result we proceed a bit
more generally as follows.
Let P be a prime ideal in an integral domain R and
denote the set { Q@ | @ is a prime ideal contained in P } by
€ (P). we note that if P is a valued prime then ¢ (P) is
totally ordered under inclusion and keeping in view the fact
that every prime ideal contains a minimal (rank zero) prime
ideal we state the
Lemma 1, Let P be a prime ideal in an integral domain R
such that ¢ (P) is totally ordered under inclusion, then for
each non zero x € P, there exists a unique prime ideal Q in
P which is minimal subject to the property x ¢ Q c P.
Proof. P/xR is a prime ideal in R/XR and so contains a
minimal prime ideal Q' = Q/xR for some Q ¢ P, but since
é;(P) is totally ordered, Q is unique and hence the lenma.

And as a result of the above lemma we can state that,
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"If x is a non zero non unit in a ring of Krull type R, then
each valued prime P of R with x € P; contains a unique mini-
mal subvalued prime satisfying x € Q c P." We shall call Q,

the minimal subvalued prime of x in P.

Now let X be a non zero non unit in an HCF ring of Krull
type and let Py,Pz,...,P,be the only valued primes containing
X. By the above lemma, each valued prime P, contains a unique

minimal subvalued prime @ containing x ( i = 1,2,...50).

T T s 7

Here we note that unlike a #*GKD, a ring of Krull type admits

e L

valued primes Pa'Pﬁ ¢ J 2 ! ( the family defining the ring

of Krull type) such that R} N Pﬁ contains non zero prime

offen - L st =3r,-'.; o

ideals. And so the minimal subvalued primes Q ( ¢ Py) of x
\‘—may not all be distinct. The case where Q¢ Q;; i # j does
not arise, because then Q becomes the minimal subvalued prime

of x in P, and P; both.
n

i=1
r
set of distinct minimal subvalued primes of x by { g; }j=

Striking repetitions out of { @ } and denoting the

1

n
we can regroup !PLIi=1 after a suitable permutation of
{ Py } as
n " "
{ P }i=1 = U II; where II; = § Pk € § B; ;:.-;,Iq"j = Pk]

bzt

We shall call the set II; , the bunch of valued primes
of x containing q; only( among all g; of course).

Now let y be such that y € qqbut y £ q; ( since q4,q.
are distinct we can have such a y ), then since R is an HCF
‘domain and quis a valuation domain, (y,x) = 84 € Q1 - Q2 »
because y = y'dy , x = x'd, , (x';¥') =1 ( since d,is the
HCF ) and because of the HCF property (x',y') = 1 in qu that
is at least one of x',y' is not in g4 but since x,¥ € q1
d1 € g1, further since y ¢ qz and 44|y » dif ga. Further let

Y1 € Q1 - Qs, then as before (y;,d1) = dz € q1-qs( and also
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d; € g~ gz )-

Replacing d, by d; = (y,,d, ), where y, € q - q,, and
repeating the process, we conclude that there exists a factor
d of x such that d e q and d ¢ q; ( §j = 2,3,...,P). In other
words, with a suitable permutation of { g ];=1 we have
proved the

Lemma 2. Let x be a non zeroc non unit of an HCF ring R of

Krull type with the family | B, } of valued primes

ae I
defining R, { P, yPs45.0.45P,§ be the set of all the valued

primes containing x and let | q; ]§_1 be the set of all the

distinct minimal subvalued primes of X, then corresponding
to each g; there exists a p;|x such that p; ¢ q; and
P; £ o for allk £ J ( Kyd = 1525e005)e
Lemma 2 leads to the notion of an element( in an HCF

ring of Krull type at present) with a single minimal sub-
valued prime and to study the properties of such elements
we state the

Lemma 3. Let d be a non zero non unit element in an HCF
ring of Krull type R. Let Py, Pyjs...,Fr be the only valued

primes( in the family § P

 Jqe 1) OF R containing d and

suppose that d has only one minimal subvalued prime q then

(1) If 4 = 4442 , then (dy,ds) = 1 only if either of qd;
is a unit ( i = 1,2).

(2) If x ¢ q but the set of all the valued primes contain-
ing x is a subset of | Pi,Pz,...,E}] then xnld for all posi-
tive integers n.

(3) If there exists another element d' such that d' has
g as the oniy minimal subvalued prime containing it, then 4’
belongs to Py,Ps,... P and to no other valued prime in the

defining'fnnily and there exists a positive integer n such

.;éiilllliii.ia
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that d|da'” and a'|4",
(4) If X has q as one of its minimal subvalued primes and

d| x, then there exists a positive integer n such that dan.

Mor¢over x = x,x, such that (X, ,% ) =1 and x, has q as its
only minimal subvalued prime.

(5) If 4 = 4,4, ; & non units ( 1=1,2) then there exists
& positive integer n such that 4, |dP or ds | g .

Proof, (1) Suppose that (4 ,d,) = 1 and that both d, are
hon units. Obviously (d ,d,) = 1 in any localization of R
( since R is an HCF domain),

Since q is a prime dde= d € g, implies that d € q or
d2 € 9. We note that both of d; cannot belong to q, because
if(dy, d2) = 1 in R, (d3,82) = 1 in Rq and since R, is a
valuation domain( q is a subvalued prime ) at least one of
di is a unit in Rq, in other words at least one of 4; is not
in q.

Let dz; ¢ q thern since dgld and since we have assumed
that d; is a non unit the set | PpelP . 71 a e Py j
is a subset of | P1sP2y...,P-} ( for if not so P 556 as Pl
is not the set of all the valued primes containing d).

Select a member P; of {P1see.sPr] such that dy ,dg € P;
but since (d;,d,) = 1 in R and(d; ,dz) = 1 in RPiand thus d,
does not belong to P;i.e. if (d,,d2) = 1 and dz £ q then
there exists no valued prime in the defining family of R
which should contain dz, a contradiction to the definition
of a ring of Krull type and hence dz is a unit. Similarly if
we had assumed d, ¢ q we would conclude that d, is a unit.
thus if (di, dz) = 1 then either of di is a unit( but of

course not both).

(2) Let x and 4 be as in the hypothesis and let
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(%,@8) =h 1.6, %= Xh , d =d4h where (x,4,) =
Since x £ q, h ¢ q ( - h|x), further since q is a prime and
dhh=4aeq;d €q. Now (x,,4,) = 1 and we claip that x,
is a unit, for if not X, is & member of at least one of
P;,Pz,...,P . Suppose that Xy€ Psy then since q c P 3
X 54 € Pg. Further since R is an HCF domain and RP is a
valuation domain X, sd; are non units in RP and so
(x,,4,) #1 in R, @& contradiction inplying that X, is a
unit 1.2, xld and obviously the same prcecdure holds for
each integral power of x.
(3) Let d,d' be as in the hypothesis and let (d4,d') =
1,60 d = dh, 4' = d{h such that (& ,d!) = 1. Obviously
h € q and this leaves us with two possibilities to consider
(a) d,df £ q
(b) one of dy ,d{ is in q.

In case (a) holds ds,d] |h by (2) above and so dld'2

and d']d2. And in casc (b) holds ; * if d; is in q then
d]d'. To show that there exists a positive integer r such
that d'ldr we first prove that there €xists an m such that
dmfd'. Suppose on the contrary that dm|d' for each m, then

for all m, dmld' in Rq. But then Rq being a valuation domain

b
9=nN anq is a prime ideal properly contained in
Moy

R, (ef Theorem 17.1 (3) page 187 [11]) that is
d'ﬂq c Qg qRq i.e. Q' = 93 N R contains the minimal prime of
d', but since we assumed that q is the minimal prime of '

and this result contradicts our assumption we infer that

there exists s positive integer m such that dm d'. Now if we
let (dn,d') = d" (n greater than m) such that a® = ag® $

d' = bd",then (a,b) = 1 and g q( for if b ¢ g, a £ g
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and so by (2) afh 4.6. 4% a', a contradiction to the fact
that ded* for an m < n.) and so d'ldQn which is the required
result.

(4) Let x and 4 be as in the hypothesis. Using a method
similar to the one used in the proof of (3) above, we can
‘prove that there exists an n such that dan. Suppose that
dn!x and consider (a",x) = h, that is a® = ah, x = bh and
(ayb) = 1 i.e. at least one of a,b is not inq. If b ¢ g
then a ¢ q and so h ¢ qQ (*.’ ah € gq). Now b has a factor con-
tained in q such that qQ is the only minimal subvalued prime
of this factor (cf Lemma 2) and thus by (2) above amlb for
cach m, and so 4" = ah|bh = x ( - a|lb and h|h) a contra-
diction and hence b ¢ 9. If we assume that a € q then since
(asb) =1 and q is the minimal prime of d and hence of a
and h we have (h,b) = 1 (since if (a,b) = 1 then (an,bn) = 1
and by (3) ebove there exists an n such that h]an) 2 6s

X = Dh “shef M o 13 A D L0, 15 o (4)
Similarly if a ¢ q we can considerp (dn+1,x) = x' and

then dn+1

=x'K ,'x = x" x* ’ (k,x") =1 and if k ¢ q
then dn|x' and so dnlx & contradiction establishing that k
must be in q. As in (A) above (k,x") = 1 implies that

* i

(Be*yx')iw 10d 8. % = xtig

X' where x' has q as its only minimal
subvalued prime am: (X", x') & 14 Sesbemmaiig o o o (B)
Now combeéning (A) and (B) we get the result.
(5) the proof follows as an application of (2) and (3).
The properties (1) and (5) of 4 in Lemma 3 give rise

to the following

Definition 4. A non zero non unit element 4 in an integral
1 Luwo mon dnd s
domain R, will be called g packet if every factorization of db,

d = dyde (if it exists) is such that
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(p:l.) (di!d-z) g 1

(pz) there exists a positive integer n such that
dy a8z or dg|ay.
Finally we state the
Tﬂeorem 1. In an HCF domain of Krull type R, a non zerc
non unit x, is expressible as the product of a finite number »f
mutually co-prime packets and this factorization is unique
up to associates of the respective packets and up to their
order.
Proof. Let X be a non zero non unit in R, let

Py 3Pz5...5P, be the set of all the valued primes containing

. X and let Q4 ,Q25.4+59y be the set of all the distinct mini-

s, S
mal subvalued primes of x., By Lemma 2, corresponding to each

q;, there exists a py |x such that p, € q and p ¢ q; for
each 1 # j.
Je first take up q,; there exists a p, such that
X = pyx' where p; € q and p, £ q; J = 25...,0
And by (4) of Lemma 3 we can write
X = X, X3 where (x,,x}) = 1 and x, has q, as its only
minimal subvalued prime i.e. x; £ q; ( J = 25...,m).
Similarly corresponding to qs, there exists ps € qo
such that pe|x and p2 ¢ @ j # 2. Being in gz, pe is not in
the bunch of valued primes of x containing qi we conclude
that X = X;pexZ and by an application of (4) of Lemma 3
again X'= X3XpXs  (XaZgsXs) = 1.
Repeating the above process we get
X = X1X2..+Xm ; wWhere each xi is a packet
and (x{,Xx;) = 1 whenevcr i # j.
Moreover if X = y1y¥2...¥s Where y; are mutually co-prime

packets then s = m, because the set of the valued primes(and
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hence of the minimal subvalued primes) remains the same.
Suppose that y; arc permuted such that, Xks¥k are in the
same minimal subvalued prime q , then x, | (y&,x) =
( Yks YaVgeoo ¥q) = Y that is x, |yx, and similarly we can
show that yi |x. I.e. for each packet x, |x = X,Xge0.X there
exists its associate yx |x = y,y,...y, which is the required
result,

Corollary 1. In an HCF *-GKD a packet is rigid and hence
an HCF #=GKD is a Semirigid Domain.

Proof. We recall that a *GKD R is a ring of Krull type

with the family |} o } of primes defining it, such that for
e I

B e I, P, N ?6 contains no non zero prime ideal(cf
Def.5 Ch. 2, and Def.3 of this chapter).

Let q be a packet in the HCF #-GKD R and let Q be the
minimal subvalued prime containing g( it can be easily
deduced from Lemmas 2 and 3 that in an HCF ring of Krull
type an element x is a packet iff it has = single minimal
subvalued prime), then q is contained in a single valucd’
prime P of R(becausc of *3 of Def.3, Ch. 2). And obviously
every non unit factor of q is in P (since otherwise q will
not be in a single minimal subvalued prime e.g. if q ¢ PR
with no containment relation between P and P'; P' contains a
minimal subvalued prime Q' of g such that 9 # Q').

Now let Q4 ,gzbe two non unit factors of g then
d15d2 € FP. “e claim that (q,,9,) # 1 for if (gy092) = 1 in R
then since R is an HCF domain (q, ,q,) = 1 in Ry i.e. at lcast
one of g1, is a unit in RP which in other words means that
at least one of g,,q; is not in P a contradiction implying
that no two non unit factors of q are co-prime. ‘e now takc

any two non unit factors q',q" of q and

R vraars g e




G S e |

62

suppose that (q',q") = 4 then Q' = xd,9" = yd where (x,y) = 1.

But since x,y also are factors of q,both of X,y ecannot be
non units and hence q'| 9" or q"|q". That is qQ is a rigid non
unit (cf Def. 1,Ch.2). Once we have shown that every packet
in R is a rigid non unit it becomes cbvious in the light of

Theorem 1, that R is a Semirigid domain,

3. Unique Representation Domains,

In the previous section, we were able to show that
€VEry non zero non unit in an HCF ring of Krull type is the
product of a finite number of mutually co-prime packets. But
from the definition of a packet follows the

Proposition 2, Let R be an HCF domain and Suppose that g
non zero non unit x in R is expressible as the product of g
finite number of mutually co-prime Packets, then the factori-
zation of x in this hanner is unique up to associates of the
packets and up to order,

And this Proposition gives us the concept of a

Unique Representation Domain gURDJ, as an HCF domain in
which every non zero non unit is cXpressible as the product
of a finite humber gof mutually CO-prime packets.

In this section af'ter formally bProving the Proposition 2
we show with the help of an c€xXample that a URD is not
necessarily a ring of Krull type. e show that an HCF domain
is an esscntial domain and prove that the necessary and
suificient condition for an HCF domain R to be a URD is that
€VEery non zero non unit in R has only & finite number of

minimal subvalued primes,and this gives rise to the defi-

nition of a *=-ecssential domain as an €ssential domain in

which every non zero non unit has a finite number of minimal
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subvalued primes.
Proof of Proposition 2, Let x be a non zero non unit in
an HCF domain R and suppose that x is expressible as
X = X Xpee.X, ; X, are packets and (x,x;) = 1,i£j--~(4).
Further suppose that x is also expressible as
X = JiVz+++¥y 3¥; are packets and(y;,y.) = 1, j#k -——-(B).
Now X|¥,¥z..+Ypsimplies that Xy= X;,X ,8uch that x,, |y,
and X, |¥p¥5+-+9, - But since (¥43¥aTg+4.9y) = 1, either x,,
is a unit or x,, is (ef Def.4 ). In other words x, |y,or
Xy |¥2¥3+++¥ns and proceeding in this manner we can show that
the(gﬁexists only one y; such that x, |y;. Reversing the
process and considering y;|x,X,...X, and using the defi-
nition of a packet as above, we conclude that there exists
an X, such that y;|x.. Morcover 7, |y; and ¥;|% implies that
Xy |%¢ i.e. k = 1 ( since if x £ 1 then' (X ,%,) =1 a
contradiction ) and obviously for each x; |x in (A) there
exists a y;|x in expression (B) such that X; 1is an associate
of yj. And consequently n = m and the factorizations (A)and
(B) are unique up to associates and a suitable permutation
of the packets.
Definition 5. An HCF domain R will be called a Unique

Representation Domain if every non zero non unit of R is

expressible as the product of a finite number of mutually
co—-prime packets,
Now to show that a URD is n.t necessarily an HCF ring
of Krull type we put forward the following
sxample 1. Let R be a PID, K its field of fractions and
let x be an indeterminate over R. The integral domain

S =R + xK[x] ; called the almost integral closurc

of R (cf [24] page 9) is a Bezout domain.

:Eggéﬁiillia=
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Consider a general non 2€ro non unit element y in S,
that is y = p,+ gvaixi 3 Yo € R, g € K.
Now y can béqéf two possible types i.e. such that
(1) r, = 0, (2) r, # 0.
In the first case y = bxs(1 +,gsajxj) 3 aj,b € K. We sce
that bx"> is a packet, because 8 & ig o

ox’- dd, ; 4 non units and (d45d3) = 1, then at least
onc of 4, say d, is of degree zero in x and thus belongs to
R, but then df]dafor €ach n and 4, is of degree s > 0 in x;

d; |dz; a contradiction establishing that(p, ) of Def. 4 holds
for bx°, Further if bx® - 4 dz, 8 > 0,4, non units either
dy € Ror q, = byx°1, If 4, ¢ R obviously 4, |d; and if

d, = bixsi,a1 > 0 then d; = byx%2, where bibe: = b , we note
that if s, = 0 then d,|d,and so we take up s; > 0 and in this
Particular case dy; divides a power of d, and vice versa., And
to sum up (p,) of Def. 4 holds for bx®, that is bx® is a

"t

packet . It is obvious that (1 + 2 aij) is a produect of

=
atoms ., But since, an stom in g Bezout domain is g prime,
N=3 -
k1 % b3 aij) is a product of powers of primes and can be

J=
written as the product of g finite number of mutually coprime
powers of primes and thus is a product of g finite number of

mutually co-prime packets because a prime power satisfics

the requirements of s packet. Moreover since

s o i s oy S
[Bx~, 1 4 2 ajx’) =1, y=0bx%1 4 2 ajx”) is the product
J=i J=!

of a finite number of mutually Co-prime packets.

n 4
In the second case, y = ro(1 + 3 a'x?), where r, € R
L =t
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and so is a product of powers of primes and similarly as in
the first case (1 + 2 afxl) is a product of powers of primes

= 2
and combining these observations pr (1 + P a{xl) is th¢ pro-
t=1

~duct of a finite number of mutually co-prime packets. And

thus we have established that S = R + xK[x] is a URD. But S

‘is not necessarily a ring of Krull typc, follows from the
r

fact that x ¢ pS for each prime p in R and if the number of

prime ideals in R is infinite, S is not a ring of Krull type.
The above example gives rise to the question of charac-
terization of a URD. We note that a URD by definition is an

HCF domain and so, part of our task would be done if we ex-
ﬁ;gin the structure of an HCF domain in terms of its valua—
tion overrings. For this purpose we prove that an HCF
domain is an essential domain. To achieve this result we need
to introduce some concepts which are to serve as tools.

Let R be an integral domain and K be its field of frac-
tions and let F(R) be the set of non zero fractionsl ideals
of R, If A ¢ ¥(R), by el we mean the set

{ xeX | xA ¢ R} and this again is a fractional ideal.
We denote by A, the fractional ideal (2™ y™ - he operation
of associating A, Wwith each fractional ideal A ¢ F(R) is
called the v-operation (cf [11] page L16]

It is well known (cf 32.1 [11]) that if & ¢ K and
A,B € F(R)

(1) (a), = (8) ; (an), = aa

(2) Aga ;ifAc_BthenAVc.:_Bv

v
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(3) (4,), = 4,

It is also known (cf (c) 32.2 [11]) that

(4B); m(AB.). < (W B}~ (Vi)

A fractional ideal A is a v-ideal if A = Av, and a
v-ideal F is said to be of finite type if there exists a
finitely generated ideal A such that Av = P,

Definition . An integral domain R is called a Prufer
y-multiplication domain if the v-ideals of finite type in
F(R) form a group under v-multiplication as (VM) above.

Note . Griffin [19] and [20] calls these integral domains,

NMy-multiplication rings" while in the present literature, a
v-multiplication ring is an integral domain in which
(AB)v c (AC)v implies that B, c C,.
Turning our attention towards HCF domains we see that it
is well knowm (cf e.g.[8]page 584) that each v-ideal of

finite type of an HCF domain is principal. And to prove that

an HCF domain is a Priifer v-multiplication domain we only
need to verify that the principal fractional ideals in #(R)
form a group under multiplicaticn which is evident, Thus an
HCF domain is a Priufer v-multiplication domain and hence
according to Griffin [19] an essential domain.

(e recall that an integral domain R is an essential do-
main if there exists a family $= | P_ | of prime ideals

& ‘ol
such that E;. RP is a valuation domain for each a e I
o

.E.Qa R=nRP ,CXGI.
o4

. w.r.t. inelusien end We shall call | P ige 1 the family

valucd primes definin

4 ~
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{P_}, for if not: x is a unit in cach R, o€ I
ie. x| € Ry a€ I :
i.e. x 1 en ﬁp = R, that is x is a unit
in R, a contradiction establishingathe result.
In what follows,the fanily of valued primes defining an

HCF domain k will be denoted by {P_} and by a valued

a’‘ce I

prime we shall mean a valued prime in {Pal and by a

ae I
subvalued prime we shall mean a prime contained in a valued

prime in iPa].

Lemma 4. A non zero non unit x in an HCF domain R is a
packet iff X has a single minimal subvalued prime .

Proof. Let x be a non zero non unit in an HCF domain R
and let x have a single minimal subvalued prime q. We have
to show that x is a packet i.e.

(py) if x = Xy3x3, where X; are non units then (xy,Xs) # 1

(ps) if x = x,X;,with X;{ non units then there exists a
positive integer n such that x, |xz or xp|xi.

We first show that (p,) holds for x, for if we assume
on the contrary that x = x,Xz, Xynon units and (x,,x3) = 1
then x; and x; cannot both belong to the same valued prime P
because then (x4,X;) = 1 in R implies that (xy,%xz) = 1 in
RP which in turn implies that at least one of X, ,Xsis not
contained in a given valued prime,

Let Py be one of the valued primes containing x,and P
be one of those containing x, then the minimal subvalued
primes Q4,9 of Xx; and X; respectively are distinct and
obviously these are minimal subvalued primes of X, a contra-
diction establishing that (x,,Xz) # 1.

Before establishing that (pp) holds for x, we prove the

following lemma to make our task easier.
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Lemma 5. Let X be a non zero non unit with a single mini-
mal subvalued prime q in an HCF domain and let IPbi & ifhl

be the family of valued primes containing x, then for every

element y which is contained only in the intersection of a
, subfamily of i%ﬁl such that y ¢ q then y°|x for all n.
Proof. Let x and y be as in the hypothesis, then for each
n, xy°© € q and xy" has q as its minimal subvalued prime (
any minimal subvalued prime of y is some subvalued prime
containing q).
Now suppose that y)x and let d = (x,y) where x = x d,
- y =y,4 and (x,,y,) =1, then since y gq , 4 ¢ q and so
ny/d2 € q gnd q is the single minimal subvalu:d prime of

2. But xy/d2 = x, ¥, where(x, ,y,) = 1. In other words

xy/d
xy/d2 has a single minimal prime and is expressible as a
product of two co-prime non units, a contradiction of (pg)
unless y, is a unit i.e. y|x. Similarly we can procccd with
y" and can show that yn|x for each n.

To show that (p,) also holds for x of Lemma 4, we first
note that q being a prime ideal, X, € q or Xz € q, and we
have two cases to consider:

(a) x, € g, and %, ¢ q (or x; € q and x4 ¢ q )
(b) Xy 9%y € Q.

If (a) holds, x, belongs to a subfamily of the valued

primes containing x and by Lemma 5, x5 |x for each n,i.e.
X, |%,. And in case (b) holds, X, ,X;, € q implies that x, ,X
both have q as their minimal subvalued prime and that
(FoXe) =4 &g ( R is an HCPF domain and Rq is a valuation
domain). Now if (x,,X,) = d then x, = x! d, Xz = x4d where
(x{,x3) =1 i.e. at least one of x/,x: is not in q. This in

turn gives rise to the following two cases:
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(1) x' £ q and X; € g (or x/ ¢ q and xo- 4 4 )
(14) zlexl # 4
In the first case if x! is not a unit, x/ belongs to a
subfamily of the family of valucd primes containing x(and
hence x] ) and so X |x) , that is X, |Xy. And in the second
case x{n]d (i=1,2.) for each n and so xilxs and Xéfxf #
Combining all the sbove cascs we conclude that (p,)
holds for x. In other words x is a packet.
Conversely let x be g packet in an HCF domain R and let
{Pﬁ} be the family of all the valued primes containing x,
further let P,Q be two distinet minimal subvalued primes of

\X and consider y ¢ p - Q, then (x,y) =d e P - g ( can be

verified easily by using the fact that R is an HCF domain
and R, is a valuation domain), and d has P as one of its
minimal subvalued primes. e claim that there exists s posi-
tive integer n such that 4 x. For if not let a"|x for each

n, then dnlx for each n in Rp and so x € n anP = PiRP

where PiRP is a prime ideal properly contained in PRP 1e€e

X € PiRP AR , and by the one-one correspondcnce between
Primes in RP and those contained in P, x has PiRP N R as its
minimal subvalued prime a contradiction to the assumption
that P is one of the minimal subvalued primes of x, and
hence there exists a positive integer n such that dnyk.

Now consider h = (x,d") where a*fx in Ry then a® = an

X = bh and (a,b) = 1. We clainm that b ¢ P for if b ¢ P, then
a ¢ P and so a|b in Rp and consequently ah|bh in R, that is

dn]x in Rp s a contradiction establishing the claim.
Purther h|a” ¢ Q and so h ¢ 4 but since bh ¢ Q;b ¢ 3 (Q

being a prime) that is we have X = bh where
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DeQand b g P ———mmmmmmmmmmmeo (1)

hePandhy¢gq - ——===(2)

but since x is a packet there cxists an n such that b|hn or

h|p™

. Now if b|hn then h ¢ @ i.¢. h € Q which contradicts(2)
and if h|b” ; b € P in contradiction to (1) and this estab-
lishes that a packet x in an HCF domain R cannot have more

than one minimal subvalued primes.

Now going from packets to products of mutually co-prime

packets, we prove the following

Theorem 3. An HCF domain R is a URD iff every non zero non

A

‘unit x in R has a finite number of minimal primes.
Proof. Let R be a URD and let x be a non zero non unit in
R. We can write
X = X XpeeoXy 5 (X,X;) =1 i 1 # ]
where each of the X, is a packet. Being mutually co-prinme,
no two of the x; have a valued prime common to them and

hence no subvalued prime, while each of the X; has a single

minimal subvalued prime(being a packet) and consequently x
has a finite number of minimal subvalued primes.
Conversely let x be a non zero non unit in an HCF

domain R and 1ét Q;,Qz5++4,q, be all the minimal subvalucd
primes containing x then following cxactly the same lines as

in the proof of Theorem 1, of this chapter we can show that
X = X4XgessX, 3 Where each of the x; is a packet
such that (x, ,x;) = 1 if i # j. And to conclude the proof we

P
mention that a minimal primcﬂgf a principal ideal is a

minimal subvalued primc. For if not let RP be not a valuation

domain, Then since RP is an HCF domain and thus is essential




71

there exists a valued prime § ( # PRP) containing x. But

then x.¢ QN R g'P a contradiction.

Theorem™3, gives rise to the following

Definition 5. An-eséential domain R with the defining

§

CVEry' ninszero non unit x in R has a finite number of mini-

family | P " of primes will be called *-essential if

a ‘ae I

mal subvalucd primes,
Finally in view of Theorem 3, and the earlier work we

can state that a non zero noh unitﬁin an HCF domain R is the

product of a finite number of mutually co-prime packets iff

é\has a finite number of minimal primes.
L, Stability Properties of URD's.

Wie begin this section with results about the behaviour
of Unique Representation under the operations of adjoining
indeterminates and localization. We then go on to establish

a property of URD's which is not shared by UFD's that is if

R is a URD x an indeterminate over R and K the field of

fractions of R then the almost integral closure
S = r + xK[x]

is a URD. Finally with the help of examples we show that the
intcgral domains we have considered under distinct names
are in fact distinct,

Like Unique Factorization, the concept of Unique Rep-
resentation remains stable under adjoining indeterminates
and this we prove with

Proposition 4. Let R be a URD and X an indeterminate over

R then R[x] is a URD.
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Proof, Since a URD is an HCF domain, and we have men-
tioned before that an atom in an HCF domain is a prime. More-
over if R is an HCF domain thcn so is R[x].
Now consider an arbitrary non zero non-.unit
i "

n
¥ = ZPLX s Iy € R,
L=0

Let 4 be the highest common factor of ry,r, ,ry,...r, then

y = d('éorfxi); the expression in braces is a primi-
tive polynomial in X, and since every non unit factor of the
expression in braces is of degrece greater than zero in x, it
has only a finite number of factors. I.e., 3 r'xi is a
product of atoms and hence of primes and since a prime power
is a packet; 3 rfxi is a product of a finite number of
mutually co-prime packets.

I'inally it can be verified that (4, 2 rfxi) = 1. And
since d is in R ( and so is a product of mutually co-prime
packets if it is a non unit)

vy =ada( 3z rfxi) = %‘r[xi is a product of a finite
number of mutually co-prime packets. Since y is arbitrary
the result follows.

Since a prime power is a rigid elcment we can state the

Corollary 3. If R is a Semirigid domain and x is an
indeterminate over K, then R[x] is a Semirigid domain.

Further let R be a UrD, S a multiplicative and satu-
rated set of R and let x be a packet in R then we claim
that if x is not a unit in R_ then it is a packet in RS' For

)
if not let X = x;Xy; where x; are non units in RS such that
(X49%3) = 1 in Rge Now if x; = W /vy, Xp = U /vg;(since R is
an HCI' domain we can take (u ,vi) =1, i = 1,2.) then
x = (uy/vy)(ug/vy) implies that vg|u, and vy |ugi.e.

u; = uyVpy Uy = ugvyand X = ujui where ul,us € R and
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g Since we apc approaching from g
localization to the original ring,

(uloul) =14 1n g

it is possible that
(W'suw)) #1 in R (moreover u' being non units in Ry are non
units in R) and thus there exists a positive integer n such
that w'|w!'™ or u ! P(x being a sacket ). If we have
w'|w ™ then obviously wf|w!® in Rg » but since (u/',uw!) = 1
in Ry which is an HCF domain, (w',u'®) = 1 in Ry, Which
implies that o'

4 1is a unit in Ry @ contradiction to the

assumption that x, , X2 are both non units in R

is a packet in RS.

Now according to the definition

S and hence x

Rg = t r/s preR ; 8¢ 8},
S

If r/s is a non unit in RS and if r = PiPzesaDps

Dy Ppackets and(pL,pj) =1 1if 1 £ j then

r/s =(p1/s1)(pg/82)---(pn/sn); where s

= 8; 830048,
) are packets if non unit and because of the

perty ( (P/8; )s(pj/85)) =
URD then so is R

(PL/SL HCF pro-
L 30 1 4 Js that is if R is a
S and so we state the

Proposition 5, Let R be a URD and S be a8 multiplicative

and saturated set in R then RS is a URD.

The concept of g rigid non unit being simpler than

that of g packet we can €asily prove the

Corollary 4, If R isg g Semirigid domain and § is a multi-
plicative and saturated set in R then R

S is again a Seni-
rigid domain.

state the

Theorem 6. Let R be an integral domain, K its field of

fractions and x an indeterminate over R, then R is g UsD iff
its almost integral closure S = R 4 x£(x] is a URD.




74

Proof. If S is a URD, all the non units of R are non
units of S and hence products of mutually co-prime packcts
and R is an HCF donain asg well,

To prove the converse we first prove the

Lemma 6, Let R be an HCF domain, K its field of fractions
and x an indeterminate over R then R + xK[x] is an HCF
domain.

Proof. A general element Yy € S can be written as

" i
(=1

As we observed in Example 1, y can be of two types

\Hcorresponding tor, =0orr, 0, that is

]

-5

bx°(1 + 3 alx?); b e K
J=1

(B) (ro #0) 55 =vo(1 + 3 (a,/r,)xb).

(&5 ]

(a) (1 = Q) 3 X

The case where one of the elements of S is zero or is
a unit, is obvious and so we consider a pair Y,s¥2 of arbit-

rary non zero non units of S, Let

n, 4 N
Vi = r°1+(21811Xl1' Y2 = Top + 3 a12x12, the following
= =l

cases are possible:

(a) both y, ,y, are of type (o)
an vitL reAsa

(b) y1 is of type (a) and y is of type (3) (er—otheruiss)
(c) ¥1,52 are both of type B).

In case (a) holds, let

" -5 4 s N -5 j
T ELRVE) . ow bzx"2(1 + 3 a! xY2)
)=t J:L )‘_ai 2

Vi = byx"t(1 4

the expressions in braces being elements of K[x] are pro-
ducts of primes and so the HCF

¥, -5 . ] "f-s‘ 1
4= (01 +3%; x4),(1 473 a x2) )

‘|3‘ 1 JJ‘-" 'ja
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can be calculated.

Now if s; < s; it is easy to see that bixsid is the
highest common factor of Y1 9¥ge Further if s, = s, = s, the
highest common factor of bixsiand bzxsa( if it exists ) must

" be of degree s in x; If b, = ¢,/d, and b, = c,/d,( we can
assume (c; ,d; ) = 1 because of R being HCF) it can be veri-
fied that ((cy,cy)/[dy,d;,])x%a is the highest common factor
of ¥4s¥3, Where [di,da] denotes the least common multiple of
d; and d4d,.

L% If the case (b) holds let yibe of type (a) and y, be of
type (B), that is  y,= byx® (1 + % a! xit)

Yo Pasld o+ 'E:aizxia) and if 4 is the
o
HCE of the elements in the braces then rozd is the HCF of
¥4 and ys.
Finally if (c) holds let y, = ry, (1 + g‘a! xii)

(= 11
" .
J,a = r02(1 + Ela! xla)
(Izsl 1z
and if 4 is the HCF of the elements in the braces then
(ros sroz )d is the HCF of Ve oda o
To sum up, each pair of non units in S has the highest

common factor and this establishes the lemma.

Now let y be a general non zero non unit element in 8§

n
then y = ro + 2 ain » o € Ky, 8, € K, and y can be of two
£z P
types; (a) y = bxs(1 + % aj XJ) ; be K, or
=i
Sl
(B) ¥y = ro(1 + 2 afx’ ).

(=t

AT N o e v b e AT 3 A AN T R R R o T il o e

[ = i
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e note that the ceXpressions within the braces in both
cases being elements of K[x] are products of powers of
primes and hence of mutually COo-prime packets.
In case () o0 # o € R is the product of g finite
number of mutually Co-prime packets (provided it is a non
i i
unit) and (&1 &3 &'X") =1 that is Y 1is a product of g
(x|
finite number of mutually co-prime packets . And in case (e)
s A 4.4 . B 4
obviously ( bx°,1 4 Zesx) s 1 5'b ¢ K, and bx" is a
%fcket itself (ef @xample 15this chapter). Consequently y
is a product of a finite number of mutually COo-prime packets

in case (a) as well, and this completes the proor,

Remark 1 , Thoeren 6, marks the basic difference of the
concepts of Unique Factorization ang Unique Representation,
because the almost integral closure of a UFD is not complete-
1y integrally closed and hence cannot be a UFD,

We have hitherto mentioned different classes of integr
ral domains,one generalizing the other; that is if we take

D to mean generalize we have

URD'sl HCF rings of Krull type p Semirigia Domains£>3
GUFD's b Hgi.'.
#e have shown by Example 75 of Chapter 1,that there
€xists a GUFD which is not a UwFDp, Similarly Example 1 orf
Chapte 2, ensures the existence of & Semirigid Domain which
is not a GQUFD. we have alsgo shown, with Example 1, of this

chapter, that. there €Xists a URD which is not an HQR ring of

srull type and finally it remains to show that there exists
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and for this we consider the following

Example 2, Let R be a Semi-local PID, K the quotient

field of R and x an indeterminate over R. The almost integral
closure

8 =R + xKX[x] , is a two dimensional Bezout
domain and is a URD ( Example 1, this chapter).

If P, =p;R, P, = P2R ye00,3P, = bnhR are all the non zero
brime ideals of R then correspondingly p § (i = 1,2,...,n)
are maximal ideals of R of rank 2. Now let

T={yes|y¢g b8 for any 1 = 1,2,...,n},

then it can be shown that T is a multiplicative saturated
\Eset. Localizing at Ty ST is a two dimensional Bezout domain

Wwith exactly n maximal ideals Dy Sq, (L 279:85. 85,n). Obviously

S is a semi quasi-local Bezout domain and so an HCF ring of

Krull type. Finally that ST is not g Semirigid Domain

follows from the fact that O# N p, S is a prime ideal.That

is ST is our example of an HCF ring of Krull type which is

not a Semirigid Domain.

Note . S it self is an €xample of an HCF ring of Krull
type. e have avoided § 88 an cxample on the basis that its
Verification becomes very lengthy.

Remark 2. Introduction of the concept of Unique Represen-

tation is the result of an effort to study and to single out

can be remarked that this concept could be of some help in
the study of HCF rings of Krull type, semi quasi-local Prufer
domains, *-essential Bezout domains ete., At least in these
cascs we could start with the knowledge that the elements of

these integral domains have some factorization Properties.
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CHAPTER L4

IDuAL TRANSFORMS 117 GENERALIZED KRULL DOMAINS
O. Introduction, Definitions and Basic results.

Let R be a commutative integral domain with unity and
let K be the field of fractions of R, If A is an ideal of R
then the set

T(A) = § x € K ' mng R for some positive integer n }
is a ring and is called th: A-transform of R, ideal trans-
form of R or the transform of A. The notion of an ideal
transform was introduced and developed by Nagata in [26] and
[ 27 is

Gilmer used the ideal transforms in the study of Prufer
domains in [12]. Later appeared [1?] by Gilmer and Heinzer.
The efficiency of this tool in studying the Priufer domains,
soon attracted the attention of various mathematicians and
the study of properties of the ideal transform began. Brewer
in [2] put forward some striking results connecting somec
integral domains and the transforms of their proper princi=-
pal ideals, while Arnold and Brewer in | 3] discussed
Generalized transforms. Gilmer and Huckaba [15] discussed
some properties of ideal transforms in general and of ideal
transforms in Krull domains in particular,

Our interest in the generalization of the concept of
Unique Factorization led us to Generalized Krull Domains (cf
Ch 1) and the rather easy formulation of Generalized Unigue
Factorization led to the observation that, with some modifi-
cations the GKD's can be studied on the same lines as Krull
domains . The realization of Theorems 1, and 2,confirmed
our observation as far as the ideal transform is concerned,

Theorem 2, in fact has motivated much of the work included

il
i}
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in this chapter.

In the first scctlon we improve Lemma 2,12 of [14] to
Theorem 1, which gives a formula for the transform of an
ideal in an integral domain which is = locally finite intepr-
scetion of a family of overrings,while Theorem 2, provides a
neat formula for the ideal transform of an ideal in a GXD.

In section 2, we generalize the property (u) discussed
in [15] page 207 to property (v) (cf Definition 1 ) and
record the consequences of this generalization,

Brewer's Theorem for Lirull domains which is included as
(4) of Theorem 9, establishes the relationship of an integral
domain (which is not quasi-local) and the transforms of its
proper principal ideals. In section 3, we provide an analogue
of this result for GKD's, and analyse the situation for
quasi local domains.

Section 4, includes miscellaneous results, in other
words those results which could not find a place in the
earlier sections but scem to be interesting enough to be in-
cluded in this chapter,

The notions and notations used in this chapter are
either familiar or properly explained with the exception

that by an ideal we mean an integral ideal including (0) and

R (the integral domain) as ideals and by an invertible ideal
We€ mean an ideal which has an inverse in the group of
fractional ideals.

In the following we include without proof, some basic
results already in the literature, and will use them where

necessary with little or no reference.
Definition Qfcf [15])An integral domain R is called a

(1) Ty-domain if T(AB) = T(A) + T(B) for every two idezls

-
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A,B of R.

(2) T,-domain if T(AB) = T(A) + T(B) for every pair of
finitely generated idcals A,B of R.

(3) Tg-domain if T(AB) = T(A) + T(B) for every pair of
principal ideals of R.

Proposition 0, (cf Prop. 1, [15]) Let A,A, ,Azs...54, and
B be ideals of an infegral domain R

(a) if k is a positive integer such that A* c B then
T(A) > T(B) and T(AB) = T(A) = T(4) + T(B)

(b) if e¢; and f, are positive integers for 1 < i < n,then

T(AS1,...,a50) = T(al1,....aln)

(c) if the hypothesis is as in (b) then

T(ASt 4 AS2 4.4 ASD) = T(Afi +...+A£”).
In particular if ( a,,...,8,) is an ideal of Rk then
?(alt,...850) = T(al§...,aln)
(a) T(aB) 2 T(a) + T(B)
(e) if A and B are such that there exists an ideal A%
such that A* > B and T(a*) = T(A) then
T(AB) = T(B) = T(4a) + T(B)
(£) if T(A) = R or T(B) = K, the field of fractions of R
then T(AB) = T(A) + T(B)
(g) T(A N B) = T(AB)
(n) (&) N T(B) = T(A + B).
Note . (a) and (e) of Prop. 1 of [15] are combined to
give (a) while (e) of Prop. O, is new but easy to verify.
Theorem O (Lemma 1 [15] ) (i) Suppose that (A,and B are
ideals of R such that (A + B) T(4,B) = T(A,B) then for
each positive integer kK, (Ak + Bk) T(A,B) = T(A,Bf?'
(ii) If A and B are comaximal ideals of R and if C is

any ideal of R then, T(ABC) = T(AC) + T(BC).

*, TAR) = T(A+BJ
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(iii) sSuppose that A and B are ideals of R and suppose
that A is invertible then T(AB) = T(A)T(B).

(iv) If A and B are ideals of R,and C is a finitely gene-
rated ideal of R, and if T(A) contains T(B) then T(AC) con-
tains T(BC).

Theorem O; ( Theo. 2 {15]) If a and b are elements of &
then the following are cquivalent:

(1) T(ab) = T(a) + T(v)

(2) for every positive integer k there exist asB in
such that (1/ab)k - cx/a:.L + ;:-:e/b;j ; i,J positive integers.,

(3) (a,b)T(a,b) = T(a,b).

Theorem O, (Theorem 4,[15]). Let A and B be ideals of R

(1) If A + B is an invertible ideal of R and if C is any
ideal of R then T(ABC) = T(AC) + T(BC).

(2) If A is an invertible ideal of R and if T(A) + T(B)
is a subring of K, then T(A) + T(B) = T(AB).

(3) Suppose that T(A) + T(B) = T(C) where A and C are
finitely generated ideals of R, then T(A) + T(B) = T(AB).

Theorem Os(Theorem 8 [15]) If x and y are non zero cle-
ments of an integral domain R such that (x) : (y) = (x),
then T(xy) = T(x) + T(y) implies that xR + yR = R.

Theorem Og (Proposition 1.4 [2]) Let & be a finitely
generated ideal of an integral domain R, with A = (819 eeniip)
then T(4) = ii;T(aL). ginasatent

Theorem O, (Theorem 1.5 [3]). Suppose that A is Q_EEEE;;I}N
ideal of an integral domain R. Let {Pa] be the collection of

all prime ideals of R which do not contain A, then
TA)'—"n -
( mRPa
Theorem Oy (Lemma 2.2 [2]). Let x be a non zero element

of an integral domain R. Then T(x) = &(1/x) = Rg 5 S = {x
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1. A Formula for the Transform of an idezl in a GKD.

In [{14], Lemma 2,12 states," Let D be an integral domain
with identity having a quotient field K. If {D; il,is a finite
family of overrings of D such that D = ﬁ,DL and if A is an
ideal of D, then T(4) = r? T(AD, ) ".

In this section we generalize this result to the case
of an integral domain R which has = family ERQE of overrings
such that R =N R, and each non unit element of R is a non

unit in only a finite number of R, . This gencralization

appears as Theorem 1, and as a conscquence of this theorem

we prove Theorem 2, which gives a formula for the transform
of a non zero ideal of a GKD.

Theorem 1. Let R be an integral domain with identity and
let K be its field of fractions., If II = {R,} is a family of
overrings of R such that

(a) R=nN ROE RER

(b) for €Very non zero non unit x of R, x is a non
unit in only a finite number of members of II
then for every ideal A of R, T(A) =N T(AR,) ;3 Ry e II .

Proof. It is clear that for every overring R' of R,

T(A) € T(AR') and so

T(4) € N T(aR,) ; R, ranging over I .

Now let y ¢ Q T(AR,) , we can write y = r/s where
r,s € R and s # O. According to the hypothesis s is a unit
in all but a finite number of members of I . Let
2 =} RiyRyessyRn}
be the set of all those overrings of R (in Il ) in which s

is a2 non unit, so that

(r/s)(AR ) SRy forall Ryell = 3 o &

,giiili.iea




Now, y = (r/s) € T(ARa) implies that
(r/e) ¢ T(AR; ) 5 1 = 1,2,...0 ( 'R, ¢ 0), that is

there exist m; (i = 1,2,...,n) such that

(r/s)\AR )™c R .
Let m =max { my | i =1,2,...,n},then
(r/s)(aR;, )™ c Ry ;
Combining (1) and (2)
(r/s)(ARa)m C Ry, for all R, in Il , that is
(r/s)(a)" c B, , for all R, in Il , that is
(r/s)(4)"c NR, =R , and thus y € T(4). In other

words T(&) = N T(ARQJ 3 R, e 1.

For the sake of reference we shall call the ring R with

a family {R, ] of overrings satisfying (a) and (b) of Theo. 1

a A-ring . The familyiRa} of overrings of R will be called

the defining family of R . If every member of the defining

faaily LRal-of a- A-ring is such that R, = Ry for some
o

prime ideal Pa then R will be called an essential A-ring. It

is easy to see that if R is an integral .domain with a family
{P,} of prime ideals such that
(1) R=NR ; P, e |P}
ol
(2) for every non zero non unit x in R, x belongs to
only a finite number of mcmbers of lPa]

then R is an essential 4-ring ,

lioreover we can assumc that no two members of [P} are

comparable w.r.t. inclusion. The family lPa] will be called

the defining family of the essential A-ring.

As may be easily seen, an essential A-ring is a
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For the present we restrict our attention to the immediate

task of finding a formuls fop the transform of an ideal in

a GKD which is a ring of Krull type restricted still further
and state as g preliminary, the following

Theorem 1', Let R be an essential A-ring with a defining

family lPai of primes, then for every ideal A of R
| T(4A) = n T(ARPa) 3P e iPa].
Corollary 1. ( frop.7, [22]) Let R be a ring of Krull type

with the defining family iRP {, then for every ideal A in R

o
T = - .
() o ek T} (AQPRP) Rp € Ry |

o

In the case of a generalized Krull Domain R, we find a
somewhat neater formula fop the transform of a non Zero
ideal A. We recall that a G£D is a. ring of Krull type in

which the defining family iPai consists of all the minimal

Don zero prime ideals of R. To bring about the saig formula

We prove the

Theorem 2, Let A be & non zero ideal in a GKD R, then
T(A) = N Rp Wwhere P ranges over all non zero mini-
mal prime ideals of R for which (ARg)% = AR
Proof. Ry Borollary 1, above

T(4) = £¢n Ry) N (N T(ARp)

P ACP

and so the task of finding the transform of A has been

4

DA e T v se————_r |

-——.ﬂ__‘:ﬁl.'...—-

ey
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rank one valuation domain R, is cither (i) principal or
(ii) idempotent (cf. e.g. [28])
(i) Let PRp be principal, then

ARp = (ﬂRP)n = (pRP)n = anP for some n, that is

I

T(ARp) = T(PRP)n = T(PRp) = T(pRp) (cf (a) Cor. 2.4[48])

I

R[1/p] (cf Theo. Og )
= K, thy ficld of fractions .of K.

(ii) Let PR, be idempotent, then Rp being of rank one is

completely integrally closed and so T(PRP) = Ry -
Now for ARP, there are two possibilities:
(a) ARp = PR, idempotent
(b) Ak, ¢ PR non idempotent (ef (b) Cor 2.4 [28])

#¢ have seen that in case (a)
T(ARP) = T(PRP) = R, , and to deal with the
case (b) let x € A, and consider XRp, € ARp ¢ PRy

since RP

both PRP-primary and so, there exists a positive integer n

is a rank one valuation domain xRP and ARP are

such that (ARP)n S XR, C ARp (ef(e) Cor. 2,4 [28])

and consequently T(ARP)

1l

T(xRP) (ef (a) Prop. O; )
- RP[1/x] = K, the field of fractions

of R.

And in view of casc (a) we conclude that if

A g P; T(ARy) = Ry iff (ARP)2 - 4R, ( since otherwise

T(ARP) = K, as we have shown cbove ). Moreover if 4 ¢ P

then AR, = R, and 8o T(ARP) = Ry for minimal primes P
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such that (ARP)2 = ARp-

To conclude our proof, we consider the expression

F2)

T(a) = ( ¢g Ry) N (AcnP T(4Rp))

Obviougly n T(ARp) = K n (n_Ry); where(ARP)2 = ARy
AcP AcP; ..~

therefore T(A)

n R 2
(AQ’P p) 0 (AQ?RP)and(ARP) = AR

= n RP

_ 2 .
( ARP) = 4Ry

5

It may be noted that in a Krull domain R, for every
minimal prime idecal P, RP is a discrete rank one valuation
domain and thus(ARP)2 = ARy implies that 4 ¢ P and so this
result proves to be a generalization of Nagata's Theorem (ef
Theo., 10, [15]) which we include as

Theorem 3. If A is a non zero ideal in a Krull domain R
then T(A) = N Rp where P ranges over minimal prime ideals
PZA ofR.

Corollary 2. If A is an ideal in R such that A is con-
tained in no minimal prime ideal of R(a GKD) then T(A) = R.

Proof. Since for every minimal prime ideal P of R, A # P,
thercfore (ARP)2 = ARp and so

T(a) = n RP = R ; because P ranges over all the
minimal primes of R.
Corollary 3. If A is a finitely generated ideal in a GKD,R

then T(&) = N RP where P ranges over minimal primes P ZA.
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Proof, Immediate from the fact that if 4 is finitely gene-

rated then so is ARy and so T(ARP) = K for every prime P #A.

2. The Property (v)

Accordfhg to Gilmer and Huckaba [15] page 207, an integ-

ral domain R is said to have property (g) if for every ideal

A in R there exists g finitely generated ideal A# c A such

that T(4A) = T(4*) moreover T(AB) = T(A¥B*) for any pair of

ideals 4A,B of R, Connected with this broperty they state the

following three results:

(1) (Cor.16,(15]). If A, B and C are ideals of an integral

domain D satisfying () ( having the property (yx)) and irf
T(A) > T(B) then T(4C) 5 T(BC).

(2) (cor. 17 [15]). 1Ff A and B are ideals of a domain D

with Property (u) and if T(a) + T(B) is the transform of an
ideal of D, then T(4B) = T(4) + T(B) .

(3) (cor. 18 [15]) If D is an intcgral domain with pro-

perty (u) then the property Tyholds iff T, holds.

These results in fact are the tools with the help of

which the behaviour of ideals in an integral domain with

property (u) can be examined. As may be verified easily,

Theorem 10, and Theorem 12, in [15] imply that a XKrull domain

has the property (u). Theorem 12 of [15] being of interest

to us is included as

Theorem 4. If A is an ideal of a generalized Krull domain )

then there exist x,y € 4 such that the ideals A and (x,y)

are contained in €Xactly the same prime ideals of D. If D is

a Krull domain then T(4) = TCx, 5 ).

The last statement in Theoren L, is exactly where we

get interested, and start questioning the necessity of the
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condition that X,y ¢ A, as is imposed upon X,y in Theorem L.
Our reasons for this behaviour being:

(1) we have generalized Theorem 10 of [15] to Theorem 2,
for generalized Krull domains, that gives a formula for the
transform of a non zcro ideal, and the formula is remark-
ably similar to that provided by Theo. 10 of [15], for Krull
domains .

(2) “hile proving Cors. 16 - 18 in [15], no use has becn
made of the condition that A% c 4.

And in view of these reasons and observations we out
forward the

Definition 1. An integral domain k will be said to have
the property (v) if for every ideal A of R there exists a
finitely generated ideal 4% such that T(A) = T(A*), morecover

T(AB) = T(A*B+*) for every pair of ideals A,B of R.
To show that this definition is consistent with the
tools used by Gilmer and Huckaba in [15], we DProve the

Proposition 5. Let R be an integral domain with property
(v)

(1) If 4,B 2nd C.are idculs of R and T(A) > T(B) then

T(aC) > T(BC).

(2) If A and B are ideals of R and if T(4) + T(B) is
the transform of an ideal then T(4B) = T(4) + T(B).
(3) The property Tsholds in R iff T4 holds.

Proof. (1) Let A*,B* and C* be finitely generated ideals
of R such that T(A) = T(a*), T(B) = T(B*) and T(C) = T(C*),
then by the hypothesis T(a*) D> T(B*) and since C* is finite—
1y generated T(4*C*) D T(3+C#) (ef (iv) Theo. 0z ) but
according to the definition of property (v)

T(AC) = T(a*C*¥) T(B*C*) = T(BC) .
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(2) Let T(4) + P(B) = T(C); beeanse of the property (y)
there exist finitely generated A=,B* and (x such that
T(A) = T(A*) ete. and so T(4*) + T(B*) = T(C*). By part 3,
of Theo. Q, T(a) + T(B) = T(a*) + T(B*) = T(A*B%) = T(AB).
(3) follows from (2).

Although Proposition 5, is a mere reproduction of Cors.
16,17,18 of [15] it broves that the property (v) is a
generalization of the property (u) and provides room for
conjecturing analogues of results about domains with proper-
ty (u) in case of those Wwith property (v) .

The generalizea Krull domeins being our immediaste con-
cern we state the

Proposition 6, 4 generalized Krull domain has property(v),

Proof. Let A be an ideal ina GKDR . If A =(0) , it is
finitely generated ana 80 we may assume A # (0), for
general considerations.

Let A be a non zero ideal in R such that T(4) = R, then
We meke a convention that A% = R = (1)(erf €Xplanation at

the end of this section).

then T(4a) = n Ry, where P ranges ovep all the minimal
primes of R for which (aR5)? = ARy (cf Theorem 2).
Let s = | P1sP2seesyPn |} be the set of all the prime

ideals of R which contain A, and Jet

Sy = { P{,P4,...P} } be the set of all those prime
ideals £, ! fop=whish $4B2, )% Liam ;. Obviously T(a) = N
L <L

wWhere P ranges over all the minimal primes not in 8;.

Now consider B = P A.PE. Ma%sey-0 Pn, by Theo. L, there
exist x,y ¢ B, such that (x,¥5) is contained exactly in

Pir{2i# 152504.5m). So that

B ——
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T(x9) = N Ry = N Ry = T(A)
PA(x,y) P¢ 8,
and we can take A* to be (x,y).
Further let A,B be any two ideals in thc GUD A,and 1ot
A%*,B* be the finitely generated ideals such that T(A) = T(a*)

1l

and T(B) = T(B*). To show that T(AB) = T(A*B*) we proceced as
follows:
T(AB) = n Rp where P ranges over all those minimal

primes for which (ABRP)Q = ABR,. But since(ABRP)2 = ABRp

2 _ 2 . .
implies that (ARP) = ARy and (BRP) = BRp; P ranges over
minimal primes of R for which P Z A* and B* i.e, P # AB#*
while 0 Rp (where P ranges over P Z A*B*)is the trasform

of A*B* and to sum up T(AB) = T(A*B*), and a GKD has the
property (v).

Corollary 4. A Prufer GKD is a Ty domain.

Proof. Let R be a Priifer G&D, by the above Proposition, R
has property (v) and being a Prufer domain, K is a Te domain
(ef (ii) Cor. 5 [15]). Thus applying (3) of Proposition 5,
the result follows.

Compared to Corollary s3of [15], we state

Corollary 5. In a GKD R, the following are equivalentt

(1) R is a T, domain

(2) R is a T, domain

(3) R is a T; domain

(4) R is a Prufer GKD.

Proof. (1) = (2) => (3) follow from the definition of
T¢ domains (3) =» (L4) follows from Theorem 11 of [15], while
(4) =» (1) follows from Cor. L, above.

In a similar fashion Cor. 14, of [15] can be restated

for GUFD's, replacing PID by GUFD Bezout, but a more general




\_

91
result can be brought sbout with the help of the

Lemma 1. An HCF domain is a Bezout domain iff it is a
Ty domain,
Proof. Let R be a Bezout domain, then R is a Prifer
domain which is also an HCF domain, but a Prifer domain is
" a T, and hence a T, domain, Conversely le¢t R be an HCPF -
T; domain, The strategy of our proof is to show that R is a
Pre-Bezout ring, we recall that an integral domain in which
(X,¥) = 1 implies that xR + YR = R is a Pre-Bezout domain(
cf [5]). Once we prove that R is Pre-Bezout ,the result will
follow from Proposition 3.2 of [5], which states," A ring
R is a Buzout ring iff it is a Pre-Bezout ring and an HCF
ring",
So to ghow that R is a Bezout ring we have to show that
any two co-prime elements in R are co-maximal.
Let x,y be two Co-prime elements in R, then obviously
(x) ¢ (¥) = (x) ('R is an HCF domain ) and since R is a 8
Ts domain also, T(xy) = T(x) + T(y) , which by Theo, Os is 3
possible only if xR + YR = R. Now x,y being arbitrary, the
result follows.,
The above Lemma enables us to state the
Corollary 6. In an HCF domain R with property (v), the
following are equivalent:
(1) R is a T, domain.
(2) R is a T, domain.
(3) R is a T, domain.
(4) R is a Bezout domain.
Proof. (1) = (2) =2 (3) obvious, (3) = (4) by Lenma 1,
above and (4) = (1) follows from the fact that R
perty (v) and is a T, domain (being Bezout).

|
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/. know that in a GUFD Ry, each non zero minimal prime
ideal P is associated to a prime quantum (cf Ch. 1), In
other words cach minimal prime P contains an element which
belongs to no other minimal prime ideal. So that if
B s 29eeesP, are minimal primes associated to the prime
quanta % 5939444, , then 9y dp+e+q, is an element contained
precisely in 2 2+++9P,+ This property of the GUFD's gives
rise to the

Corollary 7. Ths transform of €VEry non zero ideal A in a
GUFD Ry is a localization Rg of R w.r.t. a set S generated
by a single element of R.

Proof. Let A be a non zero ideal in a GUFD R, and suppose
that $= { I,,0,,..., In§ is the set of all those minimal
primes for which(ARHLJ2£ ARHL (i =1,2,...,n) and let
91 5925+ +5Q, be the prime gquanta contained in Iy 3z 90 eesilp
respectively. Then X = QyQg...q,is precisely the element for
which (:mHL)2 A xRy (1 =1,2,...n) and thus T(a) = 7(x)
where T(x) = Ry 3 8 = | xilzl(cf Theo. Oy ). If on the other
hand A is contained in no minimal prime ideal, T(A) = & and
80 we can choose x = 1.

The property (v) being at hand we can go still further
to state the

Proposition 7. If A is a non zero ideal in an HCF domain
with property (v) then there cxists an clement x € R such

(=)

that T(a) = T(x) = Ry where § = | xiLEO .
Mainly for our convenience we first state the
Lemma 2. Let R be an HCF domain and let B be an ideal of
R generated by X1sX25+005Xn, such that x;{ have a unit as
their highest common factor then T(B) = R.

»
Proof. T(B) = B Xs s Xgimsn s Xn) = N T(xy) (cf Theo. 0g).
Lzl
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there does exist u% # Rythere is no harm in replacing A* by

R. Secondly, we need this convention because, by defining

the property (v) we have dropped the condition that A# & A
to cover more general domains and as s result we come across
certain ideals A for which We cannot choose A* other than
(1) = R. For example: Let P be a minimal prime ideal in a

generalized Krull domain R such that PRP is idempotent,, then

T(P) = n R, where P ranges over all the minimal prime

ideals of R, that is T(P) = R, And obviously there exists no

finitely generated p* # R such that T(P) = T(P*) =

3. Rings and their Principal ideal T.ransforms.

An important result about the ideal transforms appears
in Brewer [2], as Theorem 2.1. For the sake of completeness
we include it here as

Theorem 8. Let R be a non quasi local integral domain
(domain with more than one naximel ideals) and let ixa} be
the collection of non units of R then R = n T(x ).

Using this theorem as a tool Brewer proved results -

which can be summed up as the

Theorem 9. Let R be g non quasi-local domain and let U be

the set of units of & then
(1) (Cor.£.3 [2]) R is integrally closed iff T(x) is
integrally closed fop gach x ¢ R - U,

(2) ( Proposition 2,4 [2]) R is a Prufer ring iff T(x) is
Prifer for each x € R - i,

(3) ( Proposition 2.5 [2]) R is almost Dedeking iff T(x)
is almost Dedekind for each x ¢ R - U.

(&) ( Proposition s 6 [2]) R is a.Krull domain

FH

‘EMP’

Bt o

|
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RR Bt i
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Note ."Non quasi-local domain"sounds awkward but we
adopt it as an economic equivalent of," 4n integral domain
which has more than one maximal ideala" or," An integral
domain which is not quasi local.

It may be obscrved that the proofs of parts (2),(3) anda
(4) of Theorem 9, depend upon the sclection of maximal
ideals or of certain prime ideals which have some property
in common (e.g. the property of being minimal in part(L)). so
it is possible to push the results stated in Theorem 9, to
a greater generality. To illustrate our Observation we state

Proposition 10. Let R be a non quasi local domain then
R has Krull dimension 1 iff T(x) has krull dimension less
than or equal to 1, for each x ¢ R - U.

Proof., If R has Krull dimcnsion 1 then every localizstion
of R has Krull dimension < 1, and T(x) being a localization
of R, dimension of T(x) < 1. Conversely let P be a maximal
ideal of R. Since R is non quasi locel, there exists a non
unit x € R - P. Now T(x) = Ry where § =lxi}:w. Clearly
PNS = ¢ and so PRS is a maximal ideal of RS + But as RS
is of Krull dimension 15 PRS is also minimal in RS s While
by the one-one correspondence between Primes ip RS and those
primes in R which are disjoint from S , = P is minimal in
R as well.Thus every maximal ideal in R is minimal also:
implying that R has Krull dimension 1.

We recall that an integral domain R is a W-domain if

(1) Every non zero prime ideal of R is maximal.

(2) Every ideal (equivalently every principal ideal) is
contained in a finite number of maximal ideals of R(ef [10])

Corollary 8. A non quasi local domain R is a W- domain

iff T(x) is a W~domain for every x ¢ K - U.
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Proof. Clearly if R is a W-domain, every localization of
R is a W-domain and T(x) being a localization of R the
necessity follows. Conversely assume that T(x) is a W-domain
for each x € R-U, that every prime ideal of R is maximal
follows from Proposition 10 above. And so to prove that R is
é W-domain, it remains only to show that every element of R
is contained in only a finite number of maximal ideals of R.
Let |} Pai ae I, be the family of all the maximal ideals
of R. Le¢t x be & non unit in R and let | Pb] be the family
of all the maximal'ideals of R which contain x. Considering
: R - H Pﬁ s two possibilities arise:
N (a) R-uU Pﬁ contains a non unit
(b) R-U Pp contains no non unit.
In case (a) holds, let y be a non unit in R - g Pﬁ and
consider T(y) = RS 3 S = | in . Clearly %gﬁ S = ¢ for
cach Pﬁ g § Pﬁ §{. And ao!PﬁRs } is the family of maximal

ideals of i Which contain x, but T(y) = Ry being a W-domain

iPﬁRS | is finite and consequently !Pﬁ} is finite .

In case (b) it is easy to verify that iPﬁ] is the set
of all the maximal ideals of R. Now select a maximal ideal
P of R and consider R - P, Since R is not quasi-local there
exists a non unit z in R - P. And obviously z being not in
all the maximal ideals comes under the case (a) and hence is
contained in only a finite number of maximal ideals of R,
Let { By }{sybe the collection of all the maximal ideals
containing z and consider T(x) = Rge Only those maximal

ideals P' are lost in upproaching from R to R for which

S
P'"N S # ¢ i.e. of which z ie a member. Now x is a non unit

in Ry = T(z) and T(z) being a ii-domain, x is contained in

2 .M
only a finite number of maximal ideals of RS. Let | 0O §isibe
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the set of all those maximal ideals of Rg which contain X,
then the set of all the maximal ideals of R which contain X
is a subset of { P, l?nu { HJ;?PherU m; = a} NRe

Generalized Krull domains being our immediate concern,
we abstain from probing into the matter too generally and
state an analogue for generalized Krull domains of part (L)
of Theorem 9, as the

Theorem 11. A non quasi local domain R is a GKD iff T(x)
is a GKD for each non unit x of R.

Note . Our proof of this theorem is essentially the
same as that of Proposition 2.6 of [2], but we treat it in
detail since some changes in the proof are needed.

Proof. Sinece for every x in R, T(x) = RS the necessity is
obvious. Conversely, let for every non unit x in R, T(x) be
a GKDe¢ To show that R is a GKD we have to prove that

(1) Ry is a rank one valuation domain for every non zero
minimal prime ideal P in R.

(2) R=n R, wherc P ranges over all minimal prime ideals
of R.

(3) Each non zero non unit of R is contained in only a

finite number of minimal prime ideals of R.

e first show that every proper prime ideal of R con-
tains a non zero minimal prime ideal and for every minimal
prime (1) holds.

Let P be a non zero prime ideal of R. Since R is non
quasi-local, there exists «t lcast one non unit a in R = P.

s OO
Now T(a) = R ;S ixllL,Oand PNS = ¢. So PT(a) is a

S 5
prime ideal in T(a), which is a GKD and hence PT(a) contains
a minimal prime ideal of T(a) which implies that

P = PT(a) N R contains a minimal prime ideal of R.
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Now let | = | be the collection of all the minimal

prime ideals cf R, Select an arbitrary P ¢ iPa} and let x be

a non unit in R - P. Since T(x) = RS P Sy = Ixii and
b |

PnNns; = ¢, PRS is a minimal prime ideal in R and so
3

Sy

is a rank one valuation domain (because RS1 is a
S, _

GKD). But

(Rg )pg

'Si nR) =R, , that is; for every

minimal prime ideal P of R, Rp 1s a rank one valuation ring.

Further let | o ! ve

5 the collection of minimal

prime ideals of RS1 = T(x); then R. = (R

Ho
Hg” N R is the minimal prime ideal Pg‘of R;whieh does not

J
contain x, and so T(x) = R. = N Ry w0 ( P(” = 1'1“ R ),
Ba. 5 B
Now R being a non quasi-local domain
R =nN T(X) =N ( n
Xe R-0 xe A-U
over all the minimal prime ideals of R.

Tyd n RP where P ranges

It can be easily verified that every element of R
belongs to at least one minimal prime ideal of R and so we

broceed to prove that EVEry non zero non unit element of R

is contained in only a finite number of minimal prime ideals

of R, We firg¢t prove that it is sufficient to show that

there exists a non unit x in R which is contained in only a

finite number of minimal prime ideals, For let x be contained

in a finite number of minimal prime ideals P1yP2yee.,Pnonly.

ile note that [PL]L-iis the only set of minimal primes lost

in approaching from R to T(x) = RS1 and that T(x) is a GKD.

Now let y be a non zero non unit in R, clearly if y is a

unit in T(x) then y divides a power of x and hence it cannot

b ,.[l'.' .
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belong to & minimal prime other than ocecurring in the set
n
{ P}, and hence is contained in a finite number of minimal

primes, if on the other hand, y is non unit in T(x) then y

belongs to a finite number of minimal primes { jj; l?‘iof
T(x) and consequently y belongs at most to the members of
{ I;N R f::i U { Pilszx; in other words we
have established the fact that every element of R is con=-
tained in a finite number of minimal primes of R if one is.
Now let x be an arbitrary non zero non unit in R and .
let | Pbxi be the set of all those minimal primes of R

which contain x anc consider X = R - U P

. Two possibili-
Bx

ties arise:
(1) X contains a non unit for some element X ¢ R = U

(2) X = U, the set of units of R for each non zero

E e

non unit x of R.

If X contains a non unit z for some x then x is a non

‘E".

unit in T(z) and so the family | %%:T(z) ! of minimal primes
of T(z) (containing x) is finite (since T(z) is a GKD) and

we are through in view of the above observation. To complete
the proof assume that for each x the family [be } of minimal
primes containing x is such that (2) sbove holds. But if (2)
holds for an element x then x belongs to every maximal ideal
of R, because if M is a maximal idezl such that x ¢ M then

therc exists an element d such that dx + m = 1 for some m <if,

but as R —UiE}EiI = U, m belongs to some »but x also

%%
belongs to %& and so 1 ¢ %% s a contradiction. So if (2)
holds for each non unit x in R, each non unit x in R is con-
tained in each maximal ideal of R, which is absurd in a non
quasi-local domain,

Corollary 9. Let R be a non quasi-local domain, then R is
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a Priifer GKD iff T(x) is a Prufer GKD for each non unit x in
R.

Now we consider the case when an integral domain R is
quasi-local., One dimensional quasi-local domains turng out to
be interesting enough to be treated separately and ;:tthe
subject of the following

Proposition 12. In an integral domain R with field of
fractions K # R the following statements are cquivalent:

(1) R is a one dimensional quasi-local domain,

(2) for every pair of non zero non units of R there exist
m and n such that x|y™ and y|x,

(3) for every non unit x in R, T(x) = K

Proof. (1) & (2) can be easily established,

(2) = (3) 1let x be a non zero non unit in R, then
3 ]

unit of R divides a power of x, that is S = R - {0} for each

oG

T(x) = R. where S but by (2) every non zero non

1}

(=0

non zero non unit x in R,

(3psp{2)r 1 BT x) = Ry = R[1/x] = K then obviously every
element of R - {0} divides some power of x and X being arbit-
rary the result follows.

Ve note that for a one dimensional quasi-local domain R;

R# N T(x) ( x varying over R - U ). And on the other
hand for every GKD R which is not a rank one valuation
domain , R =/1T(x) ; x € R - U . This fact can be verified
as follows:

Let R be a generalized Krull domain which is not a
valuation domain and let P be a minimal prime ideal in R
then there exists a non unit x in R - P. But T(x) = N Rp

P minimal and x ¢ P. and since for each minimal prime P, the

above expression holds (q‘T(x) =Nn (Ng) =:n R, Where
xek-u x x¢p
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P ranges over all the minimal primes of R ( because for cach
minimal P, RP appears in the intersection). Moreover if we
impose the condition upon R, that R = mk E(x) ,‘the possi-
bility of R being a one dimensional qﬁ;;i:local domain is
automatically ruled out (ef Proposition 12).
Now to be sure of what criteria can be obtained for a
quasi-local domain to be a GKD we state the following
Proposition 13, Let R be an integral domain sueh that
(1) R= NT(x) ; xeR = U
(2) T(x) is a GKD for each non unit x in R,
(3) R contains at least one non unit r which is contained
in only a finite number of minimal prime ideals of R, then
R is a GKD.
Proof. If R is non quasi-local it is sufficient to assume
that (2) holds (ef Theorem 8)e
Now let R be a quasi-local domain: (1) implies that 2
is not one dimensional and hence for each minimal prime P of
R there exists a non unit z in R - P and so (T(z))

PT(z)
is a rank one valuation domain(by (2) above) while

CT(Z))PT(Z) P

minimal prime P of R, R, 1is a rank one valuation domain.

s

= R is obvious, in other words, for cvery

Now T(z) = Re ;8= {z1}

= 1) R(PT(Z) nRr) = .ﬂ RP where P ranges over
all the minimal primes of R which do not contain z, and
since for each minimal prime P of R, there exists a z £ P
R . OMx) =0 (0:R,) = n Kk, (P ranges over all
X ER-U xXeR-v Ppx -
minimal primes of R). Finally as nentioned in the proof of
Theorem 11, (3) implies that SVEry non zero non unit in R

is contained in only a finite number of minimal primes of R,

and thus we have shown that all threec requirements for R to
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be a GKD are fulfilled,
Corerollary 10. A Noetherian domain R is a Krull domain
ifP ()R s ¥ Tx)s 3 X R'='Y

(2) T(x) is a Krull domain for each x ¢ R = U.

Remarks 2.

(1) Condition (3) in Proposition 13, secems to be redun-
dant but we are ungble to prove it.

(2) Local Krull domains are not difficult to find but a
quasi local GKD does not seem to have appeared in literature
before and so we provide an example as follows:

gxample A. Let f/Rbe the set of real numbers, @ the set
of positive rationals and construct

P=} 2 x%}recR; o ecall .
It can be easily verificd that T is a one dimensional
Bezout domain. Let y be an indeterminate over T and let
D = T[y]. Obviously the elements in D are functions of ¥y
and of (some positive rational) powers of X. Let
8 =1 £ly.x*) | £(0,0) £ 0 }.

It only needs to be pointed out that D - S is a prime
ideal and so DS is a quasi-local domain. Further since T is
a Bezout domain, Tly] = D is an HCF domain and consequently
the quasi-local domain Dy 1is an HCF domain(cf Lemma 9 Ch 1).

Now let a be a non zero non unit of DS' Je can write

a=7ry + sx” ; I'sS € DS‘ And since ry + sx* is a finite sum
we can write a = yox (r'y + s'xﬁ} such that the expression
in braces is not divisible by y nor by some positive
rational power of x. The factorization of r'y + s'xﬁ= Zy
depends upon the highest power of y appearing in the reduced
expression for z, and so the number of factors of 2z is

finite i.e. r'y + s'xﬁ is a product of atoms and hence of
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primes ( in an HCF domain every atom is a prime). Since a is

arbitrary, we conclude that every element a of DS can be
o 4 (Xi G.a ar

written as X P, PyeseD. Wwhere P; are primes. But xX* is g
quantutum (cf Def. 1) and because of the HCF property is a
prime quantum (cf Lemma 8). Now each prime power being a

qQuantum we conclude that every element in DS is the product

of a finite number of distinct prime quanta which means that

Dy 1s a GUFD and hence a GKD (cf Theo. 12,007

(3) We feel that it only needs to be pointed out that the
construction in the above example is analogous to that of
regular local rings. But we do not know to what extent this

quasi-local GUFD or any other domain constructed like this

one should behave like a regular local ring,

4. Miscellaneous Results.

In the first part of this section we shall establish

necessary and sufficient conditions for an ideal A in a .

Prufer GKD R to be idempotent, using the ideal transfor:;

where an ideal 4 is called idempotent if A2 = A. Then we go

oh to consider semi quasi-local Priifer GKD's which we shall

call e-domains for the sake of brevity. Finally we provide a

negative answer to . a4 question left open in [15],p. 210,

To start with we brove the following

Lemma 3, Let R be a completely integrally closed integral

o
domain with quotient field K, and let A?Eé an idempotent

ideal in R the T(4A) = R.

Proof. Suppose that T(A) = Ry, then obviously Ry D R.

Consider an element x in Ry » by the definition of the trans-

form xAn C R for some positive integer_n. We observe that

m
(2) R being a ring, x € R for all positive

integers m

S S W - S e
- R -
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(b) A being idempotent A" = Ay for all n, and from thesge
Observations we infer that xmA C R for every positive integer
m, but since R is completely integrally closed x € R, while
X being an arbitrary element of Ry, it follows that R, c R,
and hence the lemma,
Proposition 14. An ideal A in a Prifer GKD R is idenpotent
iff 7(4) = R,
sesudl Felloss
Proof. If A is idempotent the res==3t === from thec
above lemma; because a GKD is completely integrally closed,
For the converse we recall that T(4) = n R, where P ranges
over all the minimal prime ideals of R for which(ARP)z = ARp
(Theorem 2 ). But T(4) = R implies that (ARP)2 = AR, for
€ach minimal prime P in R, while each minimal prime in a
Prufer GKD is maximal and so (ARP)2 = A?sz AR, for each
maximal ideal P of R, and this precisely means that A2 = A
(cf Proposition 3.13 [24]).
Corollary 11. An ideal A in a Priifer GKD is idempotent
iff it is the intersection of idempotent prime ideals.
Proof. If A is expressible as the intersection of idempo-

tent prime ideals, the result is obvious. For the converse

we recall that a Prufer GKD is a W-domain and so
A= IyNdg Nee. T, where I, are Pi-primary(i = 1,..n).
. 2 ;
Now T(4) = n R, = R, and so(ARP) = AR that is

o 2T o s L L
(HRP9 = (HLRPL) = ARp = HLRPL which further implies that

o . : .
hLRPL= hLRPL= PLRPE But Py being P;-primary

II; =HL&P- AR = PLRP- N R = Py and thus follows the result.,
L

L

€- domains.,
To avoid repetition of too long a name we shall call

a Semi guasi-local Prufer GKD an e-domain.
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Before we display one or two results about e—-domains,
we need to mention that, in an integral domain R the inter-

section J of maximal ideals of R is called the Jacobson

radical of R. It is also helpful to keep in view that-if an
integral domain R is an intersection of a finite number of
valuation rings then R is a Bezout ring (ef [23] Theorem 107)
in other words a semi quasi-local Prufer domain is a Bezout
domain with a finite number of maximal ideals, And from
these observations it follows that an e-domain is a Bezout
GUFD. Recalling also that the intersection of all the non
zero prime ideals of an integral domain is called its
Pseudo radical we state the

Lemma 4,

(1) A GKD R with Pseudo radiecal Q is an €-domaein.if and

only if q # oO.

il

(2) An €-domain R with Pseudo radical § is a semi-local

PID iff T(Q) = K the field of fractions of R.

"'1

(3) In an integral domain R with property (v) (cf Def.1)
the folowing are equivalent;

(a) every overring of R is the transform of a finitely
generated ideal .

(b) svery overring of R is the transform of an ideal of R.

Proof. (1) can be verified and (3) is just obvious.

"
(2) If R is a semi-local PID, let { p_RE&_ be the set of
e

i

all the maximal idesls of R then Q@ = D1P2...PnR and so

T(Q) = T(P1Peeeebn) = R[1/D1DzeeeDn] = K .

To prove the converse we recall that if | P, }._, is the

Ll-_l
set of all the maximal ideals of R then

e dm e 1) - A a(ay)
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which (s idempotent i.e. non principal then

) N (AR, ) N T(aRp )

J.& B i

N

T(Q) =N T(Qng

)=i J

Obviously T(QRP ) = T(PmRP ) = Rp £ K and thus T(Q) # K, a
m m m

contradiction implying that every maximal ideal in R is not

idempotent and R being a Bezout GUFD the result follows from

Theorem 16, Ch. 1.

We recall from [14] that an integral domain R is sadd

to have property (T) if every overring of R is the transform
of an ideal of R,and if every overring of R is the transform
of a finitely generated ideal of R then R is said to have
the property (FT). Moreover a domain with (FT) is a semi
quasi-local Prufer (that is Bezout) domain. And in connection
with the GEL's we collect our observations in the form of

Theorem 15. In a GKD R with the field of fractions K # k
the following ure equivalent @

(1) There exists a non zero non unit element x in R such
that T(x). = K.

(2) The pscudo radical @ of R is non zero.

(3) R is an e-domain.

(4) R has the property (T).

(5) R has the property (FT).

Proof. (1) = (3); T(x) = K implies that there exixts
no minimal prime ideal P of R such that(xRP )2 = xRy i.e.
X is contained in every minimal prime ideal of R and because
R is a GKD R must have a finite number of minimal primes

but this makes R an intersection of a finite number of rank
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one valuations domains and this obviously makes R an e-domain.

(3) & (2) follows from Lemma 4, above,

(3) =»(5) Being an e-domain R 1s a Bezout GUFD with only a
finite number of minimal( also maximal) prime ideals . The
B3ezout property implies that every overring R, of R is a
localization of R i.e. By = RS where S intersects only a
finite number of minimal primes of R (because R has only a
finite number of minimal primes of its own) and the GUID
property implies that there €Xists an element x which
belongs precisely to those minimal primes which intersecct S
and thus R,= Ry = Tix).

(5)&>» (4) follows from (3) of Lemma 4,. And completdng
the cycle (5) = (1): An integral domain with property (FT)
is a semi quasi-loecal Prufer and so R being a GKD also has a
finite number of maximal ideals which implies that there
exists an element x in R which is contained in each maximal
ideal of R showing that Mx) = K

Gilmer and Huckaba left a question open in [15] p. 210,
which can be stated as follows," If A and B are ideals of a
Krull domain D contained in no common minimal pPrime ideals

does T(AB) = T(a) + T(B) imply that 4 + B = D9

Our answer to this question is,'"Not necessarily”. For
Suppose that R is a Krull domain which is not a Dedekind .
domain and let A,B be two idlals of R such that

T(AB) = T(4) + T(B) and A + B = R. Since R is
not a Dedekind domain there exists a maximal ideal Y which
is not minimal, further A+ B=R
T(ABM) = T(AM) + T(Bi) (ef (2) Theo. 02)

Now obviously AM and BM are contained in no common

minimal primes and T((aM)(BM))= T(aBM) = T(AM) + T(BM)
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but (AM) + (BM) # R.

The above explanation of the answer is rather unconven-
tional but it provides us with the

Theorem 16. A GKD R which is not a field is a Prifecr GKD
iff for all ideals A,B of R contained in no common mininal
primes T(AB) = T(A) + T(B) implies that A + B = R,
Proof. Let R be a Prufer GKD and A,B be two ideals which

are contained in no common minimal primes then

(1) T(4B) = T(4) + T(B) follows from the fact that a
Prifer GKD is a T, domain (cf Cor. 4)

(2) A + B =R, follows from the observation that if
A + B 1s contained in a prime ideal P then A ¢ P and B c B,
and since A,B are contained in no common minimal prime ideal
A + B is contained in no minimal prime ideal . But since
every non zero prime ideal in a Priifer GKD is maximal,
A + B is contained in no maximal ideal that is A + B = R.

Conversely let R be a GKD in which the given condition
holds and let M be a maximal ideal in R which is not minimal.
Select a non zero non unit x in R ' and consider the trans-
form of (xM). Since M is contained in no minimal prime ideal
of R, T(M) = R (cf Cor. 2) and the requirement that xR and ¥
should be contained in no common minimal prime ideal is
satisfied. Moreover T(xM) = T(x) + T(M) (cf (f) Prop. Os)
80 that for any non zero non unit x of R, xR + M = R, that
is if x €e M even then xR + M = R, a contradiction, estab-
lishing that M is also minimal. Since M is arbitrary, cvery
maximal ideal of the GKD R is minimal i.e. every non zero
prime of R is maximal and by Lemma 18 Ch. 1, R is a Prufer
GKD.

Remarks 5. A careful study of [15] reveals that most of
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the interesting results stem from an effort to study the
conditions under which a pair of ideals A,B satisfics the
transform formula i.e. T(AB) = T(A) + T(B). Obviously if A,B
satisfy the transform formula then T(A) + T(B) is a ring .
The conjecture that if T(A) + T(B) is a ring then
T(A) + T(B) = T(4AB) is not correct, and part (vii) of
Corollary 23 [15] ensures the existence of the case where
T(A) + T(B) is an overring of the integral domain R but
T(AB) # T(A) + T(B). It is natural to ask that if
T(A) + T(B) is an overring of R, under what conditions
T(A) + T(B) = T(4B) ? The answep is the following simple
Statement A, Let A and B be two ideals in an integral
domain R such -that T(A) + T(B) is a ring then
T(A) + T(B) = T(4B) iff T(AB) = T(A)T(B).
Proof. Since T(A) + T(B) is a ring T(A)T(B) ¢ T(a) + T(B)
80 that T(AB) = T(A)T(B) c T(A) + T(B) c T(4B) (cf (a)
Prop.0, ). Conversely T(aB) = T(A) + T(B) 4implies that
T(4) + T(B) is a ring and so T(A) + T(B) = T(A)T(B) and hence
T(AB) = T(a)T(B).

According to (iii) Theorem Op, if an ideal 4 is inver-
tible then T(4AB) = T(a)T(B) for any other ideal B, applying
this result directly to the Dedekind domains we find that
T(4AB) = T(A)T(B) for every pair of ideals 4,B in a Dedekind
domain, And generally

Statement B, Fkor every pair of ideals A,B of a T+ domain
R, T(AB) = T(4)T(B).

Proof. It is easy to verify that if T(A) + T(B) is an
overring then T(A)T(B) = T(a) + T(B) and since R is a T, do-
main, the statement follows.

The above observations lead to the integral domains R
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in which T(aB) = T(4)T(B) for every pair of ideals A4,B of R,
We shall call these integral domains, T' domains . The T'
property is not very strong as we shall see bPresently and so
we content ourselves with the one or two results worth
mentioning:

Statement C, A T' domain R is a T, domain iff T(A) + T{B)
is an overring of R for every pair A,B of igeals of R.

The proof is obvious.

Statement D. An HCF domain R with property (v) is a
T' domain.

Proof. By the HCF and the (v) properties, for every ideal
A of R there exists an element a ¢ R such that T(A) = T(a).
So that T(aB) = T(ab) = T(a)T(b) ; because every principal
ideal is invertible, and consequently T(AB) = T(A)T(B).




REFER .NCES

[ 1] Brewer,J.W. " Integral domains of finite character II"
J.Reine Angew. Math. 251(1971) 7 - 9

L 2] "The ideal transform and overrings"

Math. 2. 107(1968), 301 - 306.

[ 3] Brewer,J.W. and Arnold,J.T. " On flat overrings, ideal
transforms and generalized transforms of a commutative
ring " , J. Algebra 18 (1971) 254 - 263.

[4] Brewer,J.W. and Mott,J.L. " Integral domains of finite

it

character ", J.Reine Angew. Math. 241 (1970) 34 - L41.
[5] Cohn,P.M. " Bezout rings and their subrings",
Proc. Camb, Phil.Soc. 64(1968) 251 - 26L.
|6] Cohn,P.M. " Free rings and their relations",
Academic Press London and New York(1971).
(7] Gilmer,R.W. " A class of domains in which primary
ideals are valuation idezls', Math. Ann.,161(1965) ,
247 - 254.

[8] , " An embedding theorem for HCF rings",

Proc., Camb. Phil., Soc. 68(1970), 583 - 587.

[9] , " Multiplicative ideal theory ", Queen's
Series in Puee and Applied Mathematics, Queen's Uni-
versity, Kingston, Ontario, (1968).

[10] » " Rings in which the unique primary decompo-
sition theorem holds ", Proc. Amer. Math. Soc. 14,
(1963), 777 - 784,

(11] ___ ,"Multiplicative ideal theory", Marcel Dckker
Inc., New York (1972).

[12] ______ ,"overrings of Priifer domains", J.Alg. 4(1966)
331 = 34O.




[14]

[15]

(16]

[17]

(18]

[19]

[23]

[24]

T1e

Gilmer, R.W. and Arnold,J.T. " Idempotent ideals

and unions of nets of priifer domains", J.Sci,Hiro-
shima Univ., Ser. A - I, 31(1967) 131 - 145.
Gilmer,R.W. and Brewer,J.W. " Integral domains whose
overrings are ideal transforms", Math. Nachr., 51
(1971), 255 - 267.

Gilmer,R.W. and Huckaba, J.Ai. " The transform formula
for ideals", J.algebra 21(1972), 191 - 215.
Gilmer,R.W. and Heinzer, W. "On the number of genera-
tors of an invertible ideal", J.Alg. 14(1970), 139 -
= 131,

,"Overrings of Prufer domains II ",

J.Alg. 7(1967) 281 - 301.

Gilmer, R.W. and Ohm, J. " Integral domains with
quotient overrings", Math. Ann.,153(1964),97 - 103.
Griffin,M." Families of finite character and
essential valuations',Trans. smer. Math. Soc.,130
(1968), 75 - 85.

» " Some results on v-multiplication rings",

Canad. J. Math., 19(1967), 710 - 722.

»'" Rings of Krull type", J. Reine Angew. Math.,

229(1968), 1 - 27.

Hedstrom, J.R. " Domains of Krull type and ideal
transforms', Math., Nachr., 53(1972), 101 - 118.
Kaplansky,I. " Commutative rings", Allyn and Bacon
Boston, Mass., (1969).

Larsen, Mex D. and McCarthy, Paul J. " Multiplicative
theory of ideals'", Academic Press,Néw York (1971).

. " Local rings", Wiley(Interscience),




[26]

[27]

1435

"

s A treatise on the fourteenth problem of

Hilbert", Mem. Coll. Sci. Univ. Kyoto, Ser. A, Lath.,
30(1956), 57 - 70.

5 Some sufficient conditions for the four-

teenth problem of Hilbert™”, Actas Del Colloguio.
Internac. Sobre Geometrica Algebraica,(1965) 107 - 21.
Ohm,J. " Primary ideals in Prufer domains", Canad. J.
Math., 18(19e6), 1024 - 1030.

rRibenboim,P. " Annecaux Normax rdels & charactére
rini", Summa Brasiliensis Math. 3(1956), 213 - 253.
Samuel,P. " Lectures on unique factorization domains",
Tata Institute of Fundamental Research, Bombay,1964.
zariski,O. and Samuel,P. ' Commutative Algebra IV,
Van Nostrand, Princeton, N.J.,1958.

» " Commutative Algebra II", Van Nostrand,

—

Princeton,N.J., 1960.




