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Finite Character Representations
' for Integral Domains.

D. D. ANDERSON - J. L. MoTT - M. ZAFRULLAH

Sunto. — Si formulano alcune condizioni necessarie e sufficienti affinche

un  dominio integro D -abbia rappresentazione di carvattere fmzta 'y

N{Dp |t P = 1}. Si dimostra, per esempw che D possiede una mppvﬂe- e
sentazione siffatta se e solo se ogni suo ideale p'mnczpale Proprio & um: s .-

-prodotto di ideali primari, ovvero se e solo se per ogni suo ideale primo

- P minimale sopra wn ideale principale () risulta che (x)p N D & t-inverti-

“bile. Questo risultato & WLpzegato per caratterizzare alcune classi di do-

. mini integri. Infine si studia quando avviene. che linterpretazione
N {Dp|P € t-Max (D)} ha camttere fzmto

1. = Introduction.

Let D be an integral domain. The' title actually refers to two
types-of finite character representations for D. First, we study
when D = nDp for some collection § of prime ideals of D where the
_ intersection has finite character, ‘that is, each 0% deD is in only
finitely many P, from S. Theorem 8.1 gives several characterizations
of domains for which D = N Dj,_has finite character where § = X® =
= XD (D), the set of height-one prime ideals of D, while Theorem 4.3

%

considers the case where S=t-Max (D), the set of maximal t-ideals

of D. (For definitions coneerning t-ideals, see Section 2.) Second, we
study «finite character» product representations for ideals of Dj
more precisely, we study the situation where every proper principal
ideal is a t-product of primgry ideals. In fact, according to Theorem
3.1, D= Q{ Dp where the intersection has finite character if and

Pe
only if every proper principal ideal of Disa {-product of prlmary ide-

als. We use Theorem 3.1, the main result of this pbaper, to give fi-
nite-character characterlzatlons of several classes of integral do-
“mains including various classes of Krull domains and generalizations
of factorial domains. :

Section 2 reviews some of the basic properties of star—operatlons,
espec1ally the t-operation. Lemma 2.2 and Corollary 2.4 give two
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useful results concerning ideals in an integral domain D having a fi-
nite character representation N Dp . Lemma 2.2 states that for a
nonzero ideal A, if each ADp_ is principal, then A is t-invertible
while Corollary 2.4 states that if AD,, is principal for each maximal

‘ideal M, then A is invertible.

Recall that a domain D is a Krull domain precisely when D =

= ﬂ Dp has finite character and each Dpis a DVR. Section 8 inves-

PeX

tlgates 1ntegral domains D where D= [1 Dp has finite character

Pecx®

| (but the hypothesis that each Dp is a DVR has been dropped). Just

as properties of a Krull domain are reflected by its divisor class

group, we show that properties of a domain D with a finite character -

representation of the form D =[] )DP are reflected by its t-class
PeX

group Cl,(D). For example, Cl(D) is torsion if and only if some
power of each element of D is a product of primary elements (Theo- :

rems 3.4).
In the final section we move from the helght—one case D =

= ﬂ DP to the more general case D = (1 Dp. This involves

PeX P e t-Max (D)

| replacmg the notion of a P-primary ideal by the more general notion
of a P-pure ideal. We define an ideal A to be P-pure, P a prime ideal,

if ApnD=A. We show (Theorem 4.3) that every proper principal

ideal of D is a t-product of P,-pure ideals where each P, € t-Max (D) -
“if and only if D = (1 Dphas ﬁmte character and for maximal ¢~

t-Max (D)

ideals P and @, there is no nonzero prlme ideal contamed mPnQ.

This result should be viewed as the pure ideal analog of Theorem

3.1,

For terms and results not defined or stated in the paper, see[8]
or [13].

2. ~ Star-operations.

Let D be an integral domain with quotient field K. Let F(D) de-
note the set of nonzero fractional ideals of D and let £(D) denote the
subset of finitely generated members of F(D). A mapping A— A* of
F(D) into itself is called a star-operation on D if the following condi-
tions hold for all ¢ e K-{0} and A, B e F(D).

1) (@) = @), (@A) =ad*;
(2) AcA*, if AcB, then A* ¢ B¥; and

@) (A*)F =A%
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It is easily proved that (AB)*=(A* B)* = (A*B*)* for all
A, BeF(D). A fractional ideal A € F(D) is called a *-ideal if A= A*

and A is said to be *-finite.if A*=B* for some B ef(D).

A star-operation * on D is said to be of finite character if A* =
= u{J*|J ¢ A with J e AD)} for each A € F(D). If * has finite charac-
ter and A is *-finite, then A* = B* for some B ¢ fiD) with B c A. Re-
call that the function on F(D) defined by A— A,=(A1) 1=

=[D:[D: A]l is a star-operation on D called the v-operation. The
function A — A;= u{J,|J c A with Jef(D)} is a finite character
star-operation on D, called the t-operation. If * is any star-operation
on D, then (4*), = A, = (4,)* for all A € F(D), while if * has finite
character, then (A*)t = A, = (4,)* for all A € F(D). The reader may
consilt [8, sections 32 and 34] for the basic properties of star—opera—
tions and the v-operation. Also, see[9-11].

Let * be a star-operation on D. A fractional ideal A is sald to be
*-invertible if there exists a B e F(D) with (AB)* = D. In this case,
we can take B = A", Observe that if A is *-invertible and A* =

= (4;4;)*, then A, and A, are also *-invertible. If A is *-mvertlble
and * has finite character, then A is *-finite.

Suppose that * is-a finite character star-operation. An easy

- Zorn’s Lemma argument shows that each proper integral *-ideal is
- contained in a maximal proper integral *-ideal. Moreover, such a

maximal *-ideal is prime. Let *-Max(D)={P|P is a maximal
*jdeal}. For any AeF(D), A*=n{A*Dp|P e*-Max (D)} ([9, -
Propos1t10n 4] or[1l, Proposition 2.8]). In particular, D=

C n{Dp|P e*-Max (D)}. Note that A is *-invertible < AA ! ¢ P for

each P e *-Max (D). Thus if A is *-mvertlble then A is *-finite and
for each P € *-Max (D), Ap is principal. The converse is also true: if .
A is *finite and Ap is principal for each P e *-Max (D), then A is
*-invertible [11, Proposition 2.6]. In particular, an ideal A is t-in-
vertible < A is ¢-finite and Ap is principal for each maximal #-ideal
P. Also note that if A is t-invertible, then (4,)p = Ap for each P ¢ t-

Max (D). (For Apc(A;)pc(Ap),=Ap where the containment
(A;)p ¢ (Ap), Tollows from [11 Lemma 3.4] and the equality follows
since Ap is principal.) -

For any integral domain D, the set of t-mvertlble t-ideals
forms a group under the t-product A* B = (AB),. The t-class group
of D is CL(D) - the group of t-invertible t-ideals modulo the
subgroup - of - principal fractional. ideals. For D a Krull domain,

- Cl(D)=Cl(D), the divisor class group, while for D a Priifer




N

616 " D. D. ANDERSON - J. L. MOTT - M. ZAFRULLAH

domain, CL(D)= C(D) the class group. For result on the t-class
group, the reader is referred to[6] and [7]."

Suppose that § = {P,} is a set of nonzero prime ideals of D with
D = n{Dp,|P, e 8}. (Recall that D = n Dp_<>each proper ideal of the
form (a): () is contained in some P, [18, Exercise 20, page 42].) The
mapping A — A*s = n ADp _is a star-operation satisfying the follow-

ing properties: (1) ADp = A*sDp_, (2) (ANB)*s= A*snB*s for all -

A,BeF(DD), (8) P¥s=P, for each P, € 8, and (4) if A is an integral
ideal of D, then A*s # D <« A ¢ P, for some a. Moreover, if the inter-
section D = N Dp_has finite character, then *s has finite character.
For the proof of this last result and for other properties of such star-
operations, the reader is referred to[3].

LEMMA 2.1. — Let S be a set of prime t-ideals such that no two dis-
tinct. elements of 8 are comparable. Suppose that D = ~{Dp_|P € 8}
where the intersection has finite character. Then the following state-
ments hold.

1) *s-Max (D) = 8 = t-Max (D). -
2) A s *s.invertible < A is vt-invem'ble.
@3) If A is t-mve'mble, then A, = A%*s, .

PROOF. ~ (1) Since the prime 1deals in S are incomparable,
*s-Max (D) = 8. Let P €S8, so P is a prime t-ideal. If @ 3 P is a prime
ideal, then @,2Q*s =D. Hence P ect-Max(D). Conversely, if
P et-Max (D), then P*s=P #D, so Pc@QeS8. But @ is a t-ideal, so
P=Qes. ‘

() A is *s-invertible< AA™' ¢ P for each P e*s-Max (D)
L= t—Max D)< A is t-invertible.
8) A;=n{A;Dp|P et-Max(D)} = n {ADP |P e t-Max (D)} =

=N {ADp|P € 8} = A*s where the middle equality follows since
ADp = ADp if A is t-invertible and P e t—Max D). n

Note that in Lemma 2.1, we need not have 4; = A*s if A is no’c t-
invertible. See[3] for a discussion of this point.
We will Dbe especially interested in the case D=

= n{Dp|P € XV (D)} with the intersection being of finite character

where X® = XD (D) is the set of height-one prime ideals of D. Since
a height-one prime ideal is a t-ideal, the set X satisfies the hy-
potheses on § given in Lemma 2.1.

B
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As previously mentioned, an ideal A is *-invertible (for * with.

finite character) if and only if A is *-finite and Ap is principal for

~each P e *-Max (D). For star-operators induced by finite character

intersections of localizations, we may drop the hypothes1s that A is
*- finite. ~

LEMMA 2.2. — Let 8 be a collection of nonzero prime ideals of D.
Suppose that D= n {Dp_|P, €8} where the intersection has finite
character. If A e F(D) with ADp_principal for each P,, then A is
*s-invertible and hence t-invertible.

~ ProoF. - We may assume that A is integral. Since the intersec-
tion D = NDp_has finite character, ADp = Dp,_for all P,, except say
for Py, ...,P,. Fori=1, ..., m, choose a; € A with ADp, = a;Dp.. Let

Py 15 ...y Ppbe the additional primes from § that contain (ay, ..., a,).

Now A¢Py,y1U...UP,, so there exists be A—(Py,1U... UP,).
Let B =(ay, ...,a,,b). Then BDp = ADp_for each P, e 8. So B¥*s=
=A%*. Now (BB ')p,=Bp Bp'=Dp since Bp is principal.
Thus (BB~ Y)*s=D. So D=(BB Y)*s=(B*sB lys=(A*B )* =
= (AB~1)*s, Hence A is *s-invertible. But *s has finite character, so
D=D,=((AB~1)y*),= (AB™'),. Hence A is also t-invertible. m

COROLLARY 2.3. — Suppose that D = 5 ﬂ DP where the intersec-
eX

tion has finite character. Then for 0# & € P where PeX9 gDpnD
13 a t—mvertzble primary t-ideal.

PROOF - Now «DpnD is P-primary since htP=1. Thus
(@Dp N D)p = xDp while (xDp N D)q = Dg, for Q # P with ht P =1. By
Lemma 2.2, «Dpn D is t-invertible. Also, note that xDpn D is a
*¥®.jdeal. By Lemma 2.1(8), €DpnD is a t-ideal. ®

It is well known that an ideal in an integral domain is invertible if
and only if it is finitely generated and locally principal. (This is the
special case where the star-operation is the d-operation, A;= A.)
Under certain conditions, a locally principal ideal must be invert-
ible. Our next corollary generalizes the well known result that a lo-
cally principal ideal in a semi-quasi-local domain is invertible.

COROLLARY 2.4, — Suppose that an integral domain D is a finite
character intersection of localizations. Then a monzero fractional
ideal A is invertible if and only if Ay is principal for each maximal
ideal M of D.
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PRroo¥.. — Suppose that D = n Dp_has finite character. Since Ay
is principal for each maximal ideal M, each Ap_ is principal. By Lem-
‘ma 2.2, A is t-invertible. Hence A is ¢-finite. By [2, Theorem 211, A
is invertible. - =

8. - Finite character i'epresentation,

. The main result of the paper Theorem 3.1 gives a number of char-
acterizations, involving the t-operation and primary-ideals, for an

integral domain D to be a finite character intersection of its localiza- -

tions at height-one prime ideals. Corollary 3.2, an immediate conse-
quence of Theorem 3.1, gives a new proof of several well known

equivalent conditions for D to be a Krull odmain. The point of view

here is that if in Theorem 3.1 we replace «primary» by «prime» we
go from domains having a height-one finite character representation
D= ﬂ Dp to the case where each Dpis a DVR and hence Krull do-

malns The general result Theorem 8.1 is then used to study several

classes of integral domains generalizing certain classes of Krull do-

mains. In each case, the Krull domain assumption is replaced by the

weaker condition that D = " fla) Dp has finite character, the divisor
g €

class group is replaced by the t-class group, and «prime» is replaced
by «primary». Then these theorems are combined with Corollary
3. 2 we obtam the known results for Krull domains.

THEOREM 3.1. — For an integral domain D, the following condi-
tions are equivalent.

ter..

(2) Every proper principal ideal of D has a primary decompo-
sition where all the assocwted prime ideals have height-one.

(8) Every proper principal ideal of D is a t-product of primary
(t-) ideals.

(4) Every proper t-zdeal of D is'a t-pmduct of primary (t-)
1deals.

(6) Every nonzem prime ideal contains a t- mvemble pmmary
(t-) ideal. '

(6) Every proper principal ideal of D 18 a finite intersection of
t-invertible primary (¢-) ideals.

1y D= N (I)wahere the intersection 1is of finite charac-
PeX . .

¥,




FINITE CHARACTER REPRESENTATIONS ETC. 619

(7) If P is a prime ideal minimal over a proper principal ideal
(«), then (x)pn.D is t-invertible. :

PROOF. — (1)@(2) [4, Theorem 13]. (1)=>(4). Let A be a proper
t-ideal. Let * be the (finite character) star-operatlon I—-1*=

=N IDP Then A =A*= . Q{()ADP =Q;n...NnQ, where Q;=
PeX® ex@ " ‘
= ADp.n D is P;-primary and {Py,...,P,} is the set of height-one

prime. ideals containing A. Note that (@;...Q,)*=Qin...NnQ,.

Hence (@ ...@,):=(@1...Qu)*);=(@n...nQ,)=A;=A. So A
is a t-product of primary ideals. Observe that also A = (Qy ... Qu):

and Q; is' a P;-primary t-1deal because P; e X @ » VQiz=P;, and
ta - QnDP N D, '
(4)=(3). Clear.

(8)=(5). Let Pbe a nonzero‘prirlne ideal'and let 0 2 ¢ P. Then
Dz =(Qy ... Qy); where @y, ..., @, are primary ideals each of whichis

necessarily t-invertible being a ¢-factor-of a principal ideal. Then
PoDx2Q ...Qu, s0 some Q; c P. Hence P contams a t-invertible

primary ideal.

B)=(1). Let M be a maximal ¢-ideal of D Let 0c P cMbea
prime ideal. By hypothesis, there exists a t-invertible prlmary ideal
Q ¢ P. Then Qy ¢ Py and Qy is a principal primary ideal. Thus in D,,
every nonzero prime ideal contains a nonzero primary element. Sup-
pose that in Dy, (g) is P-primary where P is a prime ideal of Dj;. k4
ht P> 1, then:there exists a prime ideal Q ¢ P and hence a Q'-prima-
ry 1dea1 for some prime ideal @'c @ cP But this contradicts [4,
Theorem 4] which states that distinet prlmes havmg invertible pri-
mary ideals must be incomparable. We next show that Dy is the in-
tersection of its localizations at height-one primes. To show this, it
suffices to show that every ideal (aDy, : bDy,) # Dy, is contained in a
height-one prime ideal. Now since the saturation of the set of prod-

‘ucts of pr‘imary elements of Dy is Dy — {0}, there exists an r € Dy 50

that ar is a product of primary elements. We can assume that ar =
=¢, ...q, where (g;) is P;-primary and that the P;s are distinct
pri.mes Then (a7) = (¢; ... ¢) = (¢1) N-.. n(qy,). (See the next to the

last paragraph of [4., page 146].) Moreover, each ht P; = 1. Then

(@Dy: bDM>—<mDM m0Dy) = (((g) 1 .. 0 (@n)): 7BDy) = -

= ((@1): DDu) A . (@) 70Dy )

and each component in this intersection is either P-primary or Dy,.
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Since (aDy: bDy;) # Dy, @Dy s bDy) is contained in some P;. Thus
Dy, is the intersection of its localizations at height-one primes. Since

D= I Dy, D itself is an intersection of its localizations at
M & t-Max (D) :

height-one primes. It remains to show that this intersection has fi-
nite character. Let $={I is a nonzero finitely generated ideal of
D|there exists a finitely generated ideal J such that (IJ), is a ¢-prod-
uct of t-irivertible primary ideals}. By hypothesis, $# @. Note that S

is multiplicatively closed. Suppose that there exists a proper princi- '

pal ideal (x) ¢ S. Then T ¢ (%) for every T €S. (For if some T ¢ (x),
then T= () C, so T, = ((x)C),. Moreover, since C =2 ~'T, we can
take C to be finitely generated. But then (%) € S, a contradiction.) By
Zorn’s Lemma, we can enlarge () to an ideal B maximal with re-
spect to the property that T' ¢ B for every T € 8. Moreover, it is easi-
ly verified that B is prime [1, Theorem 2.2]. But this contradicts the

hypothesis that every nonzero prime ideal contains a t-invertible .

primary ideal. Thus for each proper principal ideal (x), there is a
finitely generated ideal J such that ((x)J); = (@ ... Q,); where @; is
P;-primary. Suppose that P 2 (¥) where ht P=1. Then P 2 (®)J so
P=P2(®)J) =@ ...Q)2Q:...Q,. Hence P 2some P;, so P =
= P, for some i since ht P = 1. Thus each proper principal ideal is con-
tained in only a finite number of height-one primes, so the intersec-
tion D= [ Dp has finite character.

PeXW

So (1)-(5) are equivalent where in each of (3)-(5) the prlmary ide-
~ als in question are not assumed to be t-ideals. Denote by (n"), for
n=3,4,5, the statement in () where each primary ideal is re-
quired to be a t-ideal. In the proof of (1)= (4) we actually showed
" that (1)=>(4"). Since clearly (4')=>(8")=(8), we have that (3") and
(4") are equivalent to (1)-(5). Since (5') = (5) and (8') = (5"), we have
that (5) is equivalent to (1)-(5).

(6) = (5). Let P be a nonzero prime ideal and let 0 # x € P. Then
Po@=Qn..nQ,2Q ...Q, where each Q; is a t-invertible pri-
mary ideal. Thus P 2 @; some i=1,...,n. :

(1)= (6). Let (&) be a proper principal ideal. Let Py, ..., P, be
the height-one prime ideals containing («). Then (x) = fl_ xDp =

= (@Dp, " D) N ... n (@Dp, " D). By Corollary 2.3, each xD; NnDis a
t-invertible pnmary t-ideal.

()= (7). Since P.is minimal over (x), P is a t-1dea1 By Lemma
2.1, ht P =1. By Corollary 2.3, (®)pn D is a t-invertible t-ideal.

(7)=(5). Let @ be a nonzero prime ideal. Let 0#x € Q. Shrink
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@ to a prime ideal P minimal over (x). Then (®)pnDisa tdhvertiblé
ideal contained in P and hence in Q. Moreover, (@) N D is primary
since P is minimal over (x). =

Suppose that D is Noetherian. Then D= [ u)DP if and only if
PeX :

every grade-one prime ideal of D has height one. In this case the in-
tersection is necessarily of finite character. 3
If in Theorem 3.1 we replace «primary ideal» by «prime ideal» or

" «power of a prime ideal», we get characterizations of Krull domains.

This is stated in Corollary 3.2. While the equivalence of most of the
statements in Corollary 3.2 is known (see [12] for another proof of
part of Corollary 3.2 and a history of some of these characteriza-
tions), our proof is entirely different.

COROLLARY 3.2. — For an integral domain D, the following con-
ditions are equivalent.

(1) D is a Krull domain.

(2) Every proper pm’ncipal ideal has a primary decomposition
of the form (x) = P{™ ... P where ht P; = 1.

(3) Every proper principal ideal is o t-product of prime (t-)
ideals.

) E‘very' proper t-ideal is a t-product of prime t-ideals.
(5) Every monzero prime ideal contains a t-invertible prime
(t-) ideal. ‘ ' ‘
(6) Every proper principal ideal has the form (x)=
= (P{"); 00 ... " (Pg"); where each P;is a t-invertible prime ideal and
each n; = 1 _ _
(1) If P s a prime ideal minimal over a proper principal ideal
(@), then (x)p "D = (P™); for some n=1 and is t-invertible.

"ProOF. - (1)=(2)-(7). Well known, Since (6), (7)=>(5) and

(4) = (3) = (5), it suffices to show that (2) = (1) and (5) = (1). By The-

orem 3.1, each of (2)-(7) implies that D = ﬂ , Dp where the inter-

sectlon is of finite character. So X® = t- Max (D) It suffices to show
that (2) and (5) imply that Dy is a DVR for P € X, Now (2) gives
that every principal ideal of Dp has the form P%, so certainly Dp is a
DVR. Suppose that (5) holds. Now since P is a maximal t-ideal, Pp
must be prmc1pa1 Hence Dp is a DVR. =
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It is éasily seen that to the list in Corollary 3.3 we.may add
(8) every t-ideal of D is t-invertible. ' '

Theorem 3.1 and Corollary 3.2 show that a finite character repre-

sentation D = " flm'Dp can be obtained from the definition of a Krull
g .

domain by replacing «prime» by «primary». In a similar manner, if
we replace «prime» by «primary» in the definition of a factorial do-
main, we get the notion of a weakly factorial domain. An integral do-
main D is said to be weakly factorial if every nonzero nonunit. ele-
ment of D may be written as a product of primary elements. Weakly
factorial domains were introduced in [4]. In [5] it was shown that the
following conditions on an integral domain D are equivalent: (1) D is
weakly factorial, (2) every convex directed subgroup of G(D), the
group of divisibility of D, is a cardinal summand of G(D), (3) if P is a
prime ideal of D mmlmal over a proper principal ideal (x), then

htP =1 and (x)p n D is principal, (4) D = ﬂ Dp where the inter- .

section has finite character and CL (D) = 0 Note that by Theorem
3.1 (or really [4, Theorem 4]), (3) may be replaced by (3') if P is a

prime ideal of D minimal over a proper pmnc1pal 1dea1 (), then_ '

(x)p N D is principal.

A domain D is called a n-domain if. every proper principal ldeal of

D is a product of prime ideals (necessarily invertible). Many charac-
terizations of n-domains are known, see, for example, [2, Theorem
3.1]. Several of these equivalences include: (1) D is a n-domain, (2)
-every nohzero prime ideal of D contains an invertible prime ideal,
(8).D is a locally factorial Krull domain, (4) D is a Krull domain in
which every divisorial ideal is invertible, i.e., C1(D) = Pic(D). Note
that in Corollary 3.2 if «t-product» is replaced by «product» and «t-
_invertible», then we get characterizations of n-domains. This point
of view has also been put forth in[12].

In our next theorem we investigate what happens to the notion
of a weakly factorial domain when «principal» is replaced by «invert-
ible» or equivalently what happens to the notion of a z-domain when
«prime» is replaced by «primary». '

THEOREM 3.8. — For an mtegml domam D, ‘the foZlowmg condi-

tions are equivalent.
(1) Every principal ideal is a product of primary zdeals

(2) Every proper principal ideal has a reduced primary de-
composition in which the primary components are invertible. -
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8) Every invertible ideal is a product of primary ideals

4) ForP a p’mme ideal minimal over a proper pmnczpal zdeal
(x), (®)p D is invertible. :

5) D= ﬂ Dp has finite character and every. t-invertible
PeX

t-ideal is mve'rtzble, i.e., CL(D) = Pic (D).

6) D= n DP has finite character (md for each maximal
ideal M of D DM 18 weakly factorial.

PROOF. — By Theorem 3.1, each of (1)-(6) entails that D =

=t ﬂ( Dp where the 1ntersect10n has finite character. Moreover,

X0 (D) = t-Max (D). For each maximal ideal M of D, properties (1)-
(4) are inherited by each D, where now «inyertible» may be re-
placed by «principal». By [5, Theorem] each such D, is weakly fac-
torial. Thus (1)-(4)=(6).” :

Suppose that (5) holds. By Theorem 3.1, every proper t-ideal A
of D is a t-product of primary t-ideals, say A = (@, ... Q,); where Q;
is a primary ¢-ideal. Now if A is either principal or invertible, each
Q; is t-invertible, being a factor of a t-invertible ideal. Thus Cl,(D) =
= Pic (D) gives that each @), is invertible. Thus @, ... @, is invertible,
s0A=(Q ...Q,) = Qy ... Q,—a product of primary ideals. Since the
product of two invertible P-primary ideals is still P-primary [4, The-
orem 1] and since a product of invertible primary ideals with distinct
radicals is equal to its intersection [4, Theorem 8], A has a reduced
primary decomposition whose components are invertible primary
ideals. Thus (5) = (1)-(8). Moreover, (5) = (4) since by Theorem 3.1,
(@)p N D is a t-invertible ¢-ideal and hence is invertible.

It remains to prove (6) = (5). Let A be a t-invertible t-ideal. We
must show that A is invertible. We can assume that A is a proper in-
tegral “ideal of D. Now A =A*X®= ((Ap,nD)...(Ap, N D))*x®
where P, ..., P, are the height- -one prime ideals containing A. Tt
suffices to show that each Ap, N D is invertible. Moreover, since each
Ap,nD is tinvertible and hence of finite type, by Corollary 2.4
it suffices to show that for each maximal ideal M, (Ap, D)y is
principal. Now A is t-invertible, so (Ap, N D)y = (a;Dp,N D)y =
= a;Dp, N Dy is principal since D, is weakly factorial. m

It is now easy to obtain characterization for »-domains such as

‘those given in [2, Theorem 3.1] by combining Corollary 3.2 and The-
- orem 3.3. These characterization will either take the form of Corol-
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lary 8.2 with the t-operation deleted (or more accurately, replaced
by the d-operation) or the form of Theorem 3.3 with «primary» re-
placed by «prime». We remark that several other equivalences may
be added to Theorem 3.3; for example, (a) every proper t-ideal in a
product of primary t-ideals, or (b) for each prime ideal P minimal

_over a proper invertible ideal I, IDp N D is invertible. However, a

condition from Theorem 8.1 that can not be added to the list is that
every prime ideal contains an invertible primary ideal. For
example, if D is a local Krull domain with nonzero torsion divisor
class group, then every prime ideal contains a principal primary ide-
al, but D is not weakly factorial.

Storch [14] defined a Krull domain D to be almost factorial if
CL(D) is torsion. Several conditions equivalent to a Krull domain be-

ing almost factorial are given in[14] and [2, Theorem 3.2]. One of

these is that D is a Krull domain in which some power of each proper
principal ideal is a product of principal primary ideals. We define an
integral domain D to be almost weakly factorial if for each nonzero
nonunit € D, some positive power of x is a product of primary ele-
ments. Our next theorem gives some conditions equivalent to D be-
ing almost weakly factorial. An interested reader may add to this
list.

" THEOREM 3.4. — For an integral domain D, the following condi-
tions are equivalent. ’

1):D is almost weakly factorial, i.e., for each monzero
nonunit « € D, there exists a positive mteger n(x) such that ™™ is a
product of primary elements.

(2) For P q prime ideal minimal over a proper principal ideal
(%), there exists a natural number n=n(x, P) so that x"Dpn D 1is
principal.
@) D ol f}( u)DP has finite character and Cl,(D) is torsion.

_ ProoOF. - N oteu that (1) and (2) imply that each nonzero prime idé;
al contains a principal primary ideal. Thus by Theorem 3.1, D =

= M DP where the intersection has finite character and X® =
Pex®

= ¢t-Max (D). Let * be the star operation A* = Q;mDP
Pe

(1)=(3). Let A be a t-invertible t-ideal. We must show that
(A™), is principal for some m=1. We can assume that A ¢ D. Let
Py, ..., P, be the height-one prime ideals containing A. Now Ap, is

3%
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principal (since A is t—invertible), so there exists a natural number
m; with A= a,Dp, where (a;) is P;-primary. Let m'=m, .
Then AE = 0&’"DP2 and (a/") is P, ;-primary. Then :

(A™) = (A")* )= ((AP1 A D)n...n(AB nD)), =
=@ .0 @M= @")Nn...0@) =@ ..ar)
is principal. _
3) = (2). Since P is minimal over (x), P is a t-ideal and hence
ht P =1. By Corollary 2.8, xDpn D is a t-invertible ¢-ideal. Hence
there exists a natural number % so that (xDp n D)), is principal.

But (@DpnD)*),= (@™ Dp A DY* * ):= (@"Dp nD),=x"Dp D,
" Dpn D is prineipal.

@ =(1). Let Py, ..., P, be the (height-one) prime ideals mini-

mal over (x). For each 1, choose m; = 1 so that ™ Dp N D is princi-
pal. Let m =m, ... m,. Then

- @™)=@")* = (@"Dp,nD) ... " (5" Dp_ A D)* =

=(@™Dp,nD)... @"Dp, " D))* = @"Dp, " D)...@"Dp D)

is a product of principal primary ideals. -

Generalizing both of the conditions given in Theorem 3.3 and 3.4,
we can also consider integral domains which satisfy the property

that for each” ‘proper principal ideal there exists a natural number

n(x), so that (x)"® is a product of (invertible) primary ideals. Using
Theorem 8.1 and [2, Theorem 2.3], the reader can readily obtain the
next theorem along with some additional characterizations. The case
where «primary» has been replaced by «prime» is given in [2, Theo-
rem 3.3).

: THEOREM 3.5. — For an integral domain D, the following condi-
tions are equivalent.
(1) For each proper principal ideal (%) of D, there exists a nat-
ural number n(x) so that (x)"® is a product of primary ideals.
(2) For each proper principal ideal (a&) and P a prime mini-
mal over (x), there exists a natural nfwmber n=mn(x, P) so that
‘&"Dpn D is invertible. ‘

3) D =, fl_mDp where the intersection has finite character
€
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and for each maximal zdeal M of D, Dy is almost weakly
Sfactorial.

4) D= ﬂ DP where the mtersectwn has fmzte character
and the local tclass group Cl,(D)/Pic (D) is torsion. m

4. —"Pure ideals.

The results of the previous section were restrictive in the sense .

that the prime ideals involved all have height-one. This restriction is

interrelated with the concept of primary ideal. To investigate finite -

character representations D = n Dp where the prime ideals are not
assumed to have height-one, we need a generalization of the notion
of primary ideal. In this section, we sketch an approach based on

~ what we call pure ideals.
If an ideal A is P-primary, then Agn D = A for each prime ideal

Q2P. Let us call a proper ideal A P-pure for a prime ideal P if
Ap mD A. This is of course equwalent to An(s)=As or

A:(8)=A for each seD—P. Observe that if P’ is a prime ideal
with P’ 5 P and A is P-pure, then A is P'-pure and that A is P-pri-
mary < A is P-pure and P is minimal over A. Hence if P € X, A is
P-pure @A is P-primary. We call an element & € D P-pure if (x) is
P-pure.

D= ﬂ Dp has finite character, then each proper ‘principal

ideal is a t-product of primary ideals. Our first theorem of this sec-
tion generahzes this result by replacing primary 1dea1s by pure
ideals.

THEOREM 4.1, — Let D = n{Dp |P, € 8} be of finite character and
suppose that no two distinct P, € § contain a nonzero prime ideal.
Then every proper principal ideal of D may be written, as a finite
t-product of P,-pure ideals, each of whu:h is fnecessomly t-mve’rt-
ible. ‘

PROOF. - Let A% = Q ADp,. Let (x) be a proper principal ideal

~of D. Let Py,...,P, be the elements of S containing (x). Put
X;=aDp.nD. Then X;p nD=2aDpnD=X;, so X; is Pspure.
Now Xp,=uDp. If P,#P;, then X;Dp=Dp. For
Xp,¢Dp=X;cP,Dp=X,n(D-P,)=0. Hence X,n(D-—
—PYD-P,)=@. For if rse X; where r¢ P; and s¢ P,, then
seX;p,nD=X;,s0seX;n(D-P,), acontradiction. So we can en-
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large X; to a prime 1dea1 @ with @ " (D —P;)(D — P,) # {. But then
QcP; nPa, a contradiction. Thus (X ... X, )¥s= ﬂ X, ..X,)Dp =
=X;n. = (%). Since *s has finite character, @@= .. .X,)
where X is P ~pure. W

While many of the results from the previous section may be ex-
tended to this more general setting, we only give extensions of two
results, namely of Theorem 3.1 and of some charactenzatlons of
weakly factorial domams

LEMMA 4. 2 — Let A be a t-invertible P-pure ideal where P e
€ t-Max (D). Then A is a t-ideal. If A ¢ Q where Q € t-Max (D), then
P=Q.

PROOF — By hypothesis Ap A D = A. Since A is t-invertible and
Pet-Max(D), Ap=(A;)p. Hence A=ApnDA)pnD 2 A;. Hence
A is a t-ideal, and therefore a v-ideal since A is t-finite. Suppose that
AcQ where Qet-Max(D), with P+#Q. Let ge Q P. Then
An ( q) =Aq. Now :

A g =@ (g = Am(q)=An(q)‘=Aq.,,
so (A7t ,q 1, =AY, ¢, =Ag) " =A7 ¢"". Hence
=LA lq'IAQ)t—((A"l,q 1)AQ)t—(A YAg,A) =
, = (A" Ag), A); = (g, A); -
But (g, A)t C Qt Q, a contradiction. ™

THEOREM 4.3. — For an integral domain D, the following state-
ments are equivalent.

1) D B t@ (D)DP has fmzte character and for P, Qe

et-Max (D), Pn Q contains no nonzero prime zdeal.
) (2) Every proper principal ideal (%) is a fimlté t-product of
P -pure ideals where P, € t-Max(D).

(3 For P e t-Max (D) and 0#xeD, xDpnD is t- invertible.

-(4) Every monzero _pmme ideal Q contains o t-invertible P-
pure ideal for some P € t-Max (D).

. PROOF. — (1) = (2). Theorem 4.1. (1) = (8). The proof of Theorem
4.1 shows that () = ((@Dp, er) (:x:DP n D)), where Py, ..., P, are
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the maximal t-ideals of D containing (). Clearly each xDp. N D is
P;-pure. (8)=-(4). Let Q be a nonzero prime ideal. Let 0 #x € Q.
Shrink @ a prime ideal Q' minimal over (x). Then Q' is a t-ideal.
Then ®Dp N D ¢ Dy "D’ ¢ @ and is by hypothesis t-invertible.

(2)=>(4). Let @ be a nonzero prime ideal. Let 0+ x € Q. Then
(®) = (4, ... A,), where A; is' P;-pure for P; € t-Max (D). Moreover,
each A; is t-invertible. Since @ is prime, A;c@ for some
i=1.,n _ )

(4)=(1). We always have D= [l Dp. Let P, Qe

Pet-_Max(D) .
‘et-Max (D) be distinet. Suppose that there exists a prime ideal

0#NcPnQ. Let AcN be a P’-pure t-invertible ideal where

P’ et-Max (D). Then P, @2 A, so by Lemma 4.2, P=P' =@, a con-

tradiction. It remains to show that D = B tQ i Dp has finite char-
€ t-Max

acter. Let §= {I is a finitely generated ideal | there exists a finitely
generated ideal J so that (I7), is a t-product of P,-pure ideals where
P, € t-Max (D)}. By hypothesis, $##. Certainly § is multiplicatively

closed. Proceeding as in the proof of (5) = (1) of Theorem 3.1, we see -

that each proper principal ideal (x) is in S. So let 0#x €D be-a
nonunit. Then there exists a finitely generated ideal J so that
((®)J); = (4, ... A,); where A; is P;-pure for P; € t-Max (D). Let Q be
a maximal t-ideal containing #. Then Q2 (®)J);2A4;...A,, so
@ 2 A, for some j. Then by Lemma 4.2, Q= P;. Hence x 1s contamed
©in only ﬁmtely many maximal ¢-ideal. ™

Unhke the case of Theorem 3.1 where we need not have D =

= n .Dp, we always have D= _ [l Dp. Moreover, if D is
PeX Pe t-Max (D)

Noetherlan, ‘then this intersection has finite character [18, Theorem
123].

Note that-if ‘A and B are t-invertible P-pure ideals where P e
et-Max (D), then (AB); is also a t-invertible P-pure 1dea1 For cer-
tainly (AB); is t-invertible and (AB);= N (AB), Dy =

. Qe t-Max(D)
=(AB);DpnD. Thus in Theorem 4.3 (2) we can write (x) = (4; ... A, )
where A, is a t-invertible P;-pure ideal (and hence a ?-ideal) and the
P/s are distinct maximal {-ideals. Note that A; is uniquely deter-
mined, for A;=Ap nD=A4;...A,DpnD=xDp nD. We leave it
to the reader to apply these comments to (2) of Corollary 4.4.

COROLLARY 4.4. — For an integral domain D, the following con-

ditions are equivalent.

e

!
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1) D= PeHrVI]ax(D)DP has finite character, for distinct P, Qe

et-Max (D), PnQ does not contain a nonzero prime ideal, and
Cl,(D)=0. ; ‘ '

(2) Every nonzero nonunit x €D may bé_ written in the form
¥ =% ... %, where x; is' P;-pure for P; e t-Max (D). '

(3) For each xeD and P et-Max (D), ®Dp N D is principal,

4) The matural map GD)—> - nra[ - G(Dp) has image
i e t-Max )

; P
Pe t-GI&i-)ax(D) G(DP )-

PROOF. — (1) = (2). By Theorem 4.3, () = (4, ... A, ), where A, is
Pi-pure. Now each A, is t-invertible, so by Lemma 4.2, each A; is a
‘t-ideal. Hence A, is principal, say A; = (z;). By medifying x; by a
unit factor, if necessary, x =, ..., where x; is P;-pure.

(2) = (3). If x is either zero or a unit, certainly xDP N D ig prin-
cipal. So write = ; ... x, where ; is P;-pure for P; e t-Max (D). We
may assume that the P/s are distinct. Let P e t-Max (D). Note that

by Lemma 4.2, xe P<>P =some P; and that in this case ®; € P;
while x; ¢ P; for j#1i. If x ¢ P, then aDpnD =D is principal. While

if P =P;, then Dp "D = %;Dp,nD = ;D is prineipal.
(8)=(1). By Theorem 4.3 we only need that CL D)=0. Let A

- be a t-invertible ¢-ideal. We must show that A4 is principal. We may

assume that A is integral. Now as in the proof of Theorem 4.1, A=
= ((A4p,n D)...(Ap,n D)), where P; ..., P, are the maximal t-ideals
containing A. But P; € t-Max (D) and A is t-invertible, so Ap, is prin-
cipal, say Ap, = a;Dp,. But then by hypothesis a;Dp, "D =Ap NnD is
principal. Hence A is principal. :

@)=@). Let Pyet-Max(D) and 0#weD. There exists a
0+#y e D with yDp, = xDp_and YDq = 1D, for Q € t-Max (D) — {P, }.
Then xDp N D = N yDp = yD, :

P € t-Max (D)

(1)-B)=>4). Since D= Dp has finite charécter,

P e t+-Max (D)

impc t_(-lvl;)axm) G(Dp) where ¢: G(D) — N bl}}ax(m G(Dp), D — (=Dp)

is the natural map. To sée that im¢ = » t(;\? o G(Dp) it suffices to
. € I-lax

note that if xDp N D =yD, then YDp, = xDp, while yDy = 1D, for
Q € t-Max(D)— {P,}. = : .
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