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Introduction. The importance of principal ideal domains (PIDs), both in algebra
itsolf and elsewhere in mathematics is undisputed. By contrast, Bezout rings, although
they represent a natural generalization of PIDs, play a much smaller role and are
far less well known. It is true that many of the properties of PIDs are shared by Dezout
rings, but the practical value of this observation is questioned by many on the grounds
that most of the Bezout rings occuring naturally are in fact PIDs. However, there are

" geveral fairly natural methods of constructing Bezout rings from other rings, leading

.o o wide classes of Bezout rings which are not PIDs, and it is the object of this paper to
- discuss some of these methods.

. The best known examples of Bezout rings occurring ‘in nature’ are the ring of entire
functions and the ring of all algebraic integers. These have been much discussed

(especially the former) and we shall say no more about them.

Perhaps the most significant property of the class of Bezout rings which is not
shared by the class of PIDs is that they can be defined by elementary sentences.
T4 fo, ows that the class of Bezout rings is closed under the formation of ultraproducts;
in this way, starting from PIDs, we can obtain Bezout rings which arve not PIDs
or even ascending unions of PIDs. This method is outlined and illustrated in section 4.

A second construction which is rather more specific is described in section 3. To
state the result we recall that an HCF-ring is an integral domain in which every pair
of elements has a highest common factor (HCF). Further a ring R is said to he inertly
embedded in a ring S (with the same 1) if the factorizations of an element of E are the

same in 8 as in R. Thus, e.g. every inertly embedded subring of a Bezout ring is an
HCF-ring (Theorem 3-1, Corollary 1). In the opposite direction we prove (Theorems 3-3

and. 3-4): |
To every HCF-ring R there corresponds a Bezout ring #(F) such that R is inertly
embedded in Z(R). T ) i

Moreover, Z(R) is a PID if and only if Risa UFD. Thusa corresponding embedding
theorem holds for UTDs and PIDs, giving in effect a method of constructing PIDs.

Technically it is advantageous to widen the class of HCF-rings to include all inte-
grally closed integral domains in which any two factorizations of a given element havea
common refinement; these rings ave called Schreier rings. Their study is the subject of
section 2. They show a very close similarity to UFDs, to which they reduce in the
presence of the maximum condition for principal ideals. Nevertheless, they form a

1 Present affiliation: Bedford Clollege, London.
1 See the beginning of section 1. All rings are understood t0 be commutative.
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wider class than HCF-rings, as an example in section 2 shows. In view of this fact it
is of interest to note that the Schreier property together with the Priifer property is
equivalent to the Bezout property (Theorem 2-8).

In section 1 some of the basic properties of Bezout rings are listed; these are in-
tended for the reader’s orientation and are for the most part well known, but no con-
venient reference secmed available.

It is a pleasure to acknowledge a stimulating conversation on the subject of this
paper with Trving Kaplansky. I am also indebted to George M. Bergman for his help-
ful criticism of an earlier version.

1. General propertics. Throughout, all rings are associative and commutative, with
unit-element, written 1 and subrings have the same 1. By a Bezout ring we understand
an integral domain in which the sum of two principal ideals is again principal. By
induction it Tollows that every finitely generated ideal is principal. Moreover, the inter-
section of two principal ideals is also principal, so that we may speak of the highest
common factor (HCUF) and least common multiple (LCM) of two elements; in fact
Bezout rings are a special case of IICF-rings, discussed in section 2.

An element of an integral domain is called an afom if it is a non-unit which cannot
be written ag a product of two non-units. If every element of a ring £ which is not a
unit or O can be written as a product of atoms, R is said to be atomic. The following
result is easily verified:

Prorostrion i-1. Anintegral domain is atomic if and only if-it satisfies the maximum
condition on principal ideals.

The most important Bezout rings are of course PIDs and from Proposition-1-1 we
obtain

ProposirioN 1-2. A Bezout ring is a principal ideal domain if and only if it is atomsc.

1t is well known, and easily proved, that every Bezout ring is integrally closed
(of. e.g. (1) section 1, Ex. 20), but it need not be totally integrally closed (see section 4
below). A useful property of Bezout rings is the fact that their overrings in their quo-
tient field are rather easily described.

7 PymoreM 1-3. Let R be a Bezout ring and K its quotient field. Then any ring T' between
" Rand K is again a Bezout ring, of the form T = g, where

S = {we Rla~teTy. (1)
~ Proof. The set § defined by (1) is clearly multiplicative and contains 1, and the cor-
;:é;lll'w;eﬂponding ring of quotients Fg is contained in 7. Now let weT, say x = ab™! and
write aR+bE = LR, then a = ka,, b = kb, and ayu—>byv = 1 for some u,ve R, hence
x = abt = a,b; * and by ' = au—vel, therefore by S and ve Lg. This shows that
T = Rg; to prove that Rg is Bezout, let x,ye Eg. Bringing « and y to a common de-
nominator, wo can write @ = ac™, y = be 1 (ceS), then aR+bR = kR, say, hence
aRg-+ bRy = kRgandsowRg+yly = ke Rg. Thus Ryis also a Bezout ring, as asserted.
Jensen (5) has shown that Prifer ringst may be characterized as rings in which the

lattice of ideals is distributive. Since every Bezout ring is a Priifer ring, we deduce

T Reeall that a Prafer ring is an integral domain in which all finitely generated ideals are
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Prorosition 1-4. In any Bezout ring, the lattice of ideals is distributive.
This is also easily proved directly: we need only show that

an(b+c)=anb+anc,
for any ideals a, b, ¢. Let acan (b+¢), say a = b+c, where beb, cec, then
ageaRn (bR+cR) = aRnbR+aR nck,

because the lattice of principal ideals in R is distributive (every lattice group is
distributive.) TN }/ ,

As a consequence Jensen shows th_a,t if R is a Bezout ring, then Ry, is a valuation
ringt for every maxirmal ideal m of . More generally, Bgis & valuation ring if the com-
plement of Sin R isa prime ideal. The precise connexion between Bezout and valuation
rings is given by

Prorosrrion 146 (Klull) An m{‘egml domain is a vatuation ring of and only of @ is
Bezout ring and a Zocal 7N, T P EYSE Y20y Gonn  on A CLAN e

Proof. Clearly a valuation ring is Bezout and local. Conversely if R is a ring satis-
fying these conditions, let «,be R, then aR 4+ bR =
a R+ b1 R o=
Thus Ris

LR and a = ka,, b = kb,, whence
R. Since B is local, either a, or b, is a unit, i.e. aff 2 bR or R < OX.
valuation ring.

HCF—WZ%gS and Schreter rings. Let B be any integral domain with quotient field
K, then the principal fractional ideals of £ form a group which is partially ordered by
taking the ‘positive cone’ to congist of the integral ideals. If this group is lattice-
ordered, the ring R is called an HOF-ring. This means in effect that every pair of
elements of R has an HCY and an LCM (cf. (4)). Since we are in an ordered group, it is
enough to agsume that either (i) any two elements have an HUF, or (ii) any two ele-
ments have an LCM, to ensure that we have an HCF-ring. However, an interesting
asymmetry becomes apparent if this equivalence between (i) and (ii) is examined in
detail. Let R be any integral domain and let @, b be two elemesits of & which have an
LCM, m say. Then they necessarily have an HCF, namely d = ab/m. For, d|a, because
«ld = amfab = m[be R and likewise d|b. Now if d'|a, d'|b, then ab/d’ is a common
multiple of & and b and hence of m, i.e. md'|ab, whence d’ |d. The converse is false, i.e.
two elements a, b may well have an HOF without having an LOM, as the following
example shows:§ let B be the ring of polynomials in x with integer coefficients and
even coefficient of . The elements 2 and 2z have HCF 1in R, but they have no LOM,
for both 4z and 28 are common multiples, so the only possible LOCM would be a com-
mon factor of 4z and 2% and it is easily seen that none of these fits. These results may
he summarized as
TrrorEM 2-1. Lel R be an integral domain; then LOMs eaist in B if and on wly of
HCOVs ewist. M mwowh uf a, b have an LOM, theh ﬂzet/ have an H('T‘ but the converse
does not always hold.

T Recall that an integral domain is g valyation ring if its principal ideals are totally order ed
by inclusion. <=2y A‘V\Aq taw ¢ o A, b Ade T Qe i C R
+ This term is understocd in its most general sensc: a local ring is a ring in which the non-
units form an ideal.
§ This answers a question raised by Jaffard (4), p. 81
. S L «
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¥ Tiis easily verified that a unique factorization domain (UFD) can be characterized
an atomic HCF-ring. However, to test for a UFD itis enough to check an apparently
weaker condition. Let us call an element p of an integral domain R prime if pk is a
prime ideal in E. Clearly & prime is always an atom, but the converse need not hold. In
fa.0t an atomic integral domain is a UFD precisely if every atom is prime. Gur object
i to generalize this property 40 the case where no maximum conditions are imposed.
It furns out that we get a wider class than that of HOF-rings in this way. Let us

define an element ¢ of an integral domain to be primal if

§

e )

|

2

clayu, imoplies that ¢ =¢0, such that  c|ay, clay (2)
Clearly an atom is primal if and only if it is prime. Now we make the

DrriNimion. A Schreier ving is an integrally closed integral domain in which
every element is primal.

The reason for the name will become apparent soomn, when it is shown that these
rings may also be characterized by the fact that the Schreier refinement property holds
for factorizations. Clearly a unit is always primal, as is zero, so in proving that a ring
is Schreier it is enough to verify that the non-units different from zero are primal. In
the factorizations which occur below, the factors will be tacitly assumed to be different
from zero.

TraornM 2-2. A ring R is a Schreier ring if and only if it is an integrally closed inbegral
domain such that for any two factorizations of an element a (= 0) of R,

= Py Py = Q1o (3)

there exist elements vy (1 = 1,....m, G =1, ..,m) such that
7 k3

In other words: any two factorizations of @ have a common refinement.
Proof. Suppose first that the refinement property holds in R, and let ¢|a, g, sy
a,ay = be,
then by hypothesis there exist d;; (6,7 = 1,2) such that
ty = dyythyys Oy = doydgg, b =dydy, ©= dyatos-
if we put ¢; = d. Hence ¢ is primal, and this shows

Now the conclusion of (2) follows
R to be a Schreier ring. Conversely, assume I to be a Schreier ring and let

010y = by by,
then b,| @, a, and hence there is a factorization
by = 110y such that cala; (0= 1.2). (5)

Write ¢, = ;1 ¢4, then b by = gy = C11C12C01Co2-

If we cancel b; (using (5)), we find that by = €1509, and this proves the refinement

property when m = n = 2. To prove it generally we use double induction, on m and 7.
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Let A=D1 Dy = Qq - Gy
Cij (2’77 = lﬁ

P1 = 1€ 41 = C13Co15 Po .

By what has been: proved, there exist 2) such that

<P = Co1Cogy Joenn ¢y, = Cyplag.

By induction there exist u,, v; (¢ = 2, ...,m) such that

Py = w0y, Gy = My, oy = o,

and there exist 2, y; (j = 2, ..., n) such that

G =Yy G = Uy, oy = Ty,
Hence Cog = Vae ¥y = Yooy,
Again by induction we find ry; (¢ = 2, ...,m, j = 2, ..., %) such that
bry =9 Hry=v
@ i

Moreover, it follows that

P = Cyy H Ty = § L 1y
7

gy = Cqq H Uy, 7
k2 K3
If we set 7y, = ¢y, ry; = @, 1,y = u; we obtain (4) and so the refinement property holds
generally. This completes the proof.

It is clear that the Schreier rings form a local class, i.e. aring B is Schreier whenever
it can be expressed as the union of a directed family of Schreier rings. More generally,
any direct limit of Schreier rings is a Schreier ring. Further, any UFD is a Schreier
ring; more precisely, we have b

TeeorEM 2-3. A ring Risa umqup factomzafwn domam zf and only if it 1s “alomic and
a Schreier ring. @ Seh e ghe
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Proof. That a UQFD satisfies these conditions is clear. Conversely, when R satisfies
the conditions, every non-unit different from 0is a product of atoras and if we are given
two complete factorizations of a, as in (3) say, where the p; and ¢; are now atoms, then
the matrix (r;;) such that (4) holds has just one non-unit in each row and each column,
By permuting ¢, ..., ¢, we can permute the columns so as to have non-units down the
main diagonal. This shows the matrix (r;;) to be square and p, to be associated to g;.
Hence B is a UFD.

The sufficiency could also be proved by observing that in a Schreier ring every atom
is prime and using the fact proved later (Lemma 2-5) that any product of primal
elements is again primal.

The condition for R to be a Schreier ring, when expressed in terms of the ordered
group of fractional principal ideals of B, becomes just the Riesz interpolation property:

R, e Given ay, ..., 0,0y, ...,b, e R such that a;|b;, there ewisis c€ R such that ag|clb;.

Thus in contrast to an HCF-ring, where we can find a kighest common factor of a
finite set of elements, in a Schreier ring we can find a higher common factor than any
/f X, b Mu Ea ~ ;m/me A
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given finite set of common factors. As in the case of HCF-rings it is enough to assume
R, , for m =n = 2. For this fact and other equivalent forms of R, , we refer to
Fuchs (3). In particular, every lattice-ordered group has the Riesz property, a fact
which for rings is expressed by

TanoriM 2-4. Bvery HCF-ring s a Schreier ring.

The converse is false, as the following example shows, of a Schreier ring which is a
union of HCF-rings but not itself an HCF-ring. Let & be the semigroup of all pairs of
non-negative rationals and F[(] the semigroup algebra over a field /. Then F[¢] is
an HCF-ring (and hence a Schreier ring); for we can write ¢ as a union of semigroups
N x N (where NV is the additive semigroup of non-negative integers) and hence F[(]
is a union of polynomial rings F'[x, y] over F. For any positive integer n, let I, be the
subsemigroup of ¢ consisting of all o, £ satisfying f/n < o < fn. Bach I', is isomorphic
to &, under the mapping defined by

I n
L)

hence F[T',] is again a Schreier ring; writing I' = U I, we see that F[I"] is also a
Schreier ring (as union of Schreier rings). However, it is not an HOF-ring; for 1" consists
of all pairs of positive rationals together with (0, 0) and so, e.g. (1,2) and (2, 1) bave no
HCF in F[T°].

We now consider localization for Schreier rings. An element of an integral domain
R is said to be completely primal if all its factors are primal. A subset S of & ring £ is said
to be multiplicative if it is a subsemigroup of the multiplicative semigroup of £, i.e.
if § is closed under multiplication and contains the unit-eloment; if moreover, any
factor of an element of S again lies in S, then S is said to be saturated.

Lamma 25, In an integral domain, any product of (completely) primal elements is
(completely) primal. Moreover, the set of all completely primal elements s saturated.
Proof. Let p, q be primal and assume that pg|a,a,, then p = p;p, and p;la;. Writing

a; = p;r;, we have .
by = P17 Pt = PYS, S2Y,

hence 7,7, = gs, i.e. g|r;ry, whence ¢ = ¢, ¢, and ¢;|r;. Thus pg = p;q,p,q, and
D3 G| Pt =
which shows pg to be primal. By induction it follows that any product of primal ele-
ments is again primal. In particular, the product of any two completely primal
elements is primal and it only remains to consider factors of such products. Thus let
P, q be completely primal and
pq = ab,
Then p = p'p”, p’|a, p"|b, say
a=pq, b=pq;
on multiplying out we find that ¢’q" = ¢. Since p, ¢ are completely primal, it follows
that p’, ¢’ are primal and by the first part, so is a. This shows pg to be completely
primal, and again the result extends to any number of factors by induction. The last
agsertion is clear from the definition.
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The behaviour of Schreier rings under localization is described by the next result,
which is analogous to Nagata’s theorem for UFDs (cf. (6)):

THEOREM 2:6. Let I be an integrally closed integral domain and S o maulliplicative / ;
subset of L. T'hen

(i) ¢f B is a Schreier ring, so is Ry, g[‘»’l
schreier ring which is a (ii) of RBgus a Schreier ring and S is generated by completely primal elements of R, then /
emigroup of all pairs of R is a Schreier ring. i
a field . Then #[G] is Of course in (i) we could simply have assumed that S is a multiplicative set con-

s & union of semigroups sisting of completely primal elements, by Lemma 2-5, but the hypothesis actually

tegers) and hence /|G stated may be easier to verify in practice.

integer n, let I, be the Proof. (i) Let claya, in Rg, say a,a, = be. Then there exist s, g,, Iy, 1€ 8 such that
. Each I, is ig omorphlc 810y, Soliy, 10, tyce B and

(1810q) (bySgths) = 5, 8,0, Blye.
Now s;8,%,¢,c€ B, hence by the Schreier property for R,

81890y t¢ = €1y,  where ¢,
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Write ¢j = ¢,/s;1;, then cje Ry, ¢jcj = ¢ and ¢}]a, (in Rg). Thus every element of Ry is
primal.
(if) By Lemma 2-5, every element of S is completely primal; we have to show that
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Moreover, since a,/c;€ Ry and {,¢f = ¢; = s,¢;, it follows that ¢,/c/e Ry, i.e.

” S S T PLoAn “
= P11 Pags and w0y = ;b  (u;€8,b;e R). ARG (7) i
' Omitting the primes from ¢} we have thus obtained a factorization . : '
7 product of primal ele- C =010y Wy = ;b (bjeR,ueS, i=1,2). . . T 7 (8) t
two completely primal ‘ s
o Hurther, a,a, = ck, for some Le R, therefore w,u,a,a, = u u.ck = ¢,c,b.b, and so
such products. Thus let ) Y1t v ) 1ty Gy 10 = €1 0oL 0y NS IO
Uy Uk = by by. Ty

Y R 2
(E o

Now u, is
value in (8), we obtain

10y, hence uq = uyuyy, uy|b;, say by = g, b). Inserting this

e gy gty = Uy bycy,
letely primal, it follows

B O ’ ore 1 1 3 YT £ a — ’ 1 py —
ws pg to be completely hence u,|b1¢,. Here wy, is again primal, so w,;, = vw, v]by, w|cy. Thus w, = uyow,
s by induction. The last g3 0|by, we, and wlb, (because wlu,,|b,). We have now the following factorizations in
' R

a1 = (C/w) (byfuv), € = (cifw) (cyw), gty = (cow) (byfw).

Theeiem b Com bt N &@”M b

N Ny
i 5/ Jhe 5
,,f,/ /‘w Soam f.CF OV %% [? {f ’
- /) f “‘( /Mﬂ%( ﬁl\ e ’ 1" "; 1A 1 ‘
Q ans ,ﬂ/fim A ﬂ’? f‘ e /;f“ {7

,
/ / ‘
4 AN

/

»R@\x ”} &
N/



958 P. M. Conn

Therefore if in (8) we replace b, by, ¢y, ¢ bY by g0, bylw, 6fw, cow respectively, we
obtain the same set of equations with u, replaced by 1 and u, left unchanged. Repeating
the procedure we can redioo uy also to 1, and then we obtain the system

¢ =0y Gy = CD; (9)

This shows ¢ to be primal in K. Since ¢ was any non-zero element of R, this proves I
to be a Schreior ring.
By imposing the maximuom condition on principal ideals we obtain again Nagata’'s

theorem, in the following slightly more g eneral form (of. (6), p. 31):

(oROLOARY. Let B be an atomic integral domain and S a multiplicative subsei. Lf
R s a UFD and S s generated by primes, then R is itself o UFD.

OF course this result may also be proved directly without any difficulty, if we use
the remarks following Theorem 2-1 above. We need only verify that an atom of £
ecither divides an element of & {and hence is prime because § is generated by primes)
or it stays an atom in Ry (and hence is prime because Rgis a UFD).

As an application of Theorem 2:6 we show that the Schreier property is preserved
by polynomial extension; this result will be needed later.

TaroreEM 2-7. Lel R be a Schreier ring and x an indeterminate, then R[x] is again o
Sechreier ring.

Proof. Tt is well known (cf. (4), p. 99) that R[z] is again an integrally closed integral
domain. Let K be the quotient field of R and S the multiplicative subset consisting of
all non-zero elements of B. Then K = Rgand

Bir]y = Bglw] = K]
is o UFD. So the result will follow by Theorem 2-6 if we can show that S is generated
by completely primal eleraents. Let ceS and ¢|fy, where f,ge Elx], say f=Za;x,
g = Zh;al. Since R is integrally closed, we can apply Kronecker’s lemma ((4), p. 99)
and conclude that c|a;b; for all 4,3, i.e.
1,¢/a;lc, b;.
By the Riesz interpolation property there exists d € K such that
1,efa\dle, by, ie. dyc/deR and cld\a;, d|b;.

Thus ¢/d|f, d|g and this shows ¢ 10 be primal in R[xz]. Since every factor of ¢ is again in
8. ¢ is completely primal and the result follows.

To explore the relation between Schireier rings and Bezout rings further, let us recall
that PTDs may be characterized as UFDs which are also Dedekind rings. Analogously,
Bezout rings may be characterized as HCF-rings which are also Pritfer ringsT (ef.(1),
soction 2, Bx. 17). This follows also from the next result, which is slightly more general:

Tunorsy 28, A ring is a Bezout ring if and only if it is @ Schreier ring and a Priifer
rUT -

+ Recall that a Prifer ring is an integral domain in which all finitely gencrated ideals are
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Proof. Clearly any Bezout ring is both Schreier and Priifer. Conversely, let R be

Schreier and Priifer; we have to show that any ideal generated by two elements is

principal. Since £ is a Priifer ving, such an ideal is projective as E-module, so we need

only show that any 2-generator projective R-module is free. Such a module is deter-

mined by its projection from R2, i.e. by an idempotent 2 x 2 matrix, and it suffices to
show that every such matrix which is different from O and 7 is similar to

B, — ( 1 Q\k

¢ 0/
T e
Let ﬂ‘{\c d),

be an idempotent matrix different from O and 7. Since & is certainly similar to £,
over the quotient field of R, £ and B have the same trace and the same determinant,
i.e.

i a+d=1 ad—>Dbec=0.

ol

Bince £ is a Schreter ring, we have ¢ = ayt,, d = didy, b = a;d,, ¢ = ayd;, i.e.
AY

(G Qg Oy (e »
B = { 1% 1 .4) where @, (]'2'1'(1;1052 - L

\ody  dydy

— (“1 _"dz) o @y dy
o w lo o lia o)

thus K is similar to B, as asserted.

3. Bezout rings from Schreier rings. Our objective is to find a fairly wide olass of
rings which can be embedded in Bezout rings. Of course some limitation on the
embedding is necessary, for every integral domain can be embedded in a field and this
is certainly a Bezout ring. We shall therefore restrict ourselves to embeddings which
do not change the possible factorizations of existing elements. To be precise, let us
make the following

Durrnrrion. Given aving R, a subring Pis said to be inertly embedded in R and RjP
is an enert exiensiont if any factorization in R of an element of P also lies in P, i.e.
given ac P, if a = a,a,, where a,e R, then o, P.
It follows from this definition that B and P have the same units. Our first aim is to
prove that the HCIF-property is preserved by inert embeddings.

Treorem 3-1. Let B be an HCF-ring, then any inertly embedded subring P is again
an BCF-ring, and the HCF of any two elements of P is the same itn P as in E.
Proof. Buppose that P is inertly embedded in R, and let a, b, ¢ P have an HCFd in I
a =day, b=db, and d'|le, d'|b in R implies d’'|d.
By inertia the factors d, ag, by all lie in P. Now let d’ be a common factor of a, b in P,

then since d is the HCF in R, we have d = d'w in R and hence in P. Thus d'|d in P and
this shows d to be the HCF in P also.
T Strictly speaking this should be called a strongly inert extension in contrast to an extension

in which o = aya, (a, € R) implies a,u, ula, ¢ P for some unit u in P. This reduces to the
definition given in the text if we add the assumption that every unit of £ lies in P.
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Since a Bezout ring is HCF and an HCF-ring is Schreier, we have

CorotLARY L. Any inertly embedded subring of a Bezoul ring is an HCF-ring and
hence @ Schreier ring.

CoOROLLARY 2. Any inertly embedded subring of @ PID 4s a UFD.

Tor by Corollary 1, an inertly embedded subring P of a PID R is an HCP-ring.
Further, any non-unit 0 of T is a pr oduet of/atoms in R and hence in P. Therelore
P is atomic and s0 18 a UFD\

Our aim will be to prove 15113,1, conversely, any UFD can be embedded in a PLD
and any HCF-ring can be onfbeaded in a Bezout ring. It is convenient to prove a
slightly more general result, starting from Schreier rings. A pair of elements a, b
of a ring R is said to be coprime, if a\\have no common factor in B (apart from units);
i moreover there exist ¢, de R such that ad — be = 1, then a, b arc said to be comavimal
Slearly any comaximal pair is coprime; the converse is not true in general, thoughitdoes
hold in Bezoub rings, as is easily seen. We now define a pre-Bezout ring to be an integral
domain in which every coprime pair is comaximal. These rings are related to Bezout
rings by the following proposition, whose pr ool mayy be left to the reader:

PrOPOSITION 3-2. 4 ring is a Bezout ring if and only if it is a pre-Bezout ring and an
HCF-ring.

This result does not hold with ‘HCF-ring’ replaced by ‘Schreier ring’, as we shall
see later (Theorem 3-4, Corollary 2).

We can now state our main result:

TaroraM 2-3. Given any Schreier ring R, there exists a pre-Bezout ring J(P) such
that B(R)|R is an inert extension; moreover, Z(R) is again a Schreier ring. '

Proof. Let a, b be a coprime pair in I and consider the polynomial ring § = Rz, y];
by Theorem 2-7, this is again a Schreier ring. Write
2= ax—by (10)

and consider the ring of quotients with respect to the multiplicative set generated by
:;m\sa)g ;5(,) M is again a Schreier ring by Theorem 2-6; it is obtained by adjoining

X, 2 %2 3L R, qub]ect to the relation (10). Let T be the subring of S, consisting of
biementg\“ﬂ 5 }eg{ree 2eT0 in z, 5, z. We assert that (i) 7 is Schreier and (ii) 7'/ R is an inert

od = eey in T,

then ¢,d, e, e, a;\e‘( }\\\Q'}ﬁogoneous of degree 0. Since S, is Schreier, ¢ = ¢;¢; and
[(} in b(") leaﬂvﬁ\@h 100"6‘(1(‘()11 and their degrees add up to 0, s0 on replacing
\ i \n we can ensure that ¢,, ¢, are both of degree 0. Let

ad hence lies in T', therefore c;|e; in T'; this shows T

\
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where f is a form of degree n in « and y. Now assume that an element ¢ of E can be
factorizedin 7T';

€= 010y ¢ = [z (ceR), (12)
where f; is a form of degree n, in « and y which is not divisible by z = ax — by. Multi-
plying up, we obtain the equation

ezt = fi fy

in S and since @ and b are coprime in S, z = ax — by is an atom in S; henee 2 is prime
(because S is Schreier) and so, if %, +n, > 0, then 2|f; or z|f,. This contradicts the
choice of the f;, hence ny = n, = 0 and (12) is a factorization in R. This shows 7 /R to
be an inert extension.

By transfinite induction (or by carrying out all the necessary adjunctions simul-
tancously) we reach a Schreier ring R, such that R,/E is an inert extension and every
coprime pair in K is comaximal in £,. Repeating the process, we obtain a chain

R=R,c R, cR,<=... (13)

whose union U is again a Schreier ring (because being Schreier is a local condition).
Secondly, U/R is an inert extension, for if ce R has a factorization ¢ = ¢;¢, in 1/,
choose the least n such that ¢ie R, (i = 1,2); if n > 0, then since R, /R, , is inert,
c;€ R, ;. This shows that in fact n = 0, i.e. ¢;e R. Thirdly, U is pre-Bezout, for if
@, b are coprime in U, then a,be I, say, hence a,b are comaximal in &
in U. This completes the proof.

We shall call a ring Z(R) satisfying the conditions of Theorem 3-8 a pre-Bezout hull
of . In general there will be more than one pre-Bezout hull. Thus suppose for a
moment that a, b are already comaximal in R, say

et and 8o also

ad — be = 1. (14)
If x and y are again indeterminates adjoined to R, then the transformation
x = ax— by,
y' = cx—dy,

is invertible, by (14). Thus R[x,y] = E[«’,y"] and writing again z = ax — by we have
Rlz,y, 2] = R[z',y',«'"1]. Thus the ring T’ constructed in the proof consists of all
elements f(x,” y')[2'", where fis a form of degree nin 2" and y'. In other words, 7" has the
form R[], where I = 4’ /2" is an indeterminate.

This observation suggests that different pre-Bezout hulls are obtained from a fixed
‘minimal’ one by adjoining indeterminates and again forming a pre-Bezout hull, but
we have not been able to prove this supposition. However, this is immaterial in what
follows. To apply our theorem we look at pre-Bezout hulls in the case of HCF-rings and
UFDs. The situation here is described in the next theorem.

TaroreM 3-4. Let B be a Schreier ring and % (R) a pre-Bezout hull; then
(1) B(R)is a Bezout ring if and only of B s an HCF-ring,
(1i) B(R) is a PID of and only if R s a UFD.
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Proof. 1f %(R) is Bezout, then R is an FACH-ring by Theorem 3-1, Corollary 1.
jonversely, if R is an HCF-ring, then so is the polynomial ring L[] (¢f. (1) section 1,
Fix. 23 or (4), p. 100). Now consider the ring 7 constructed in the proof of Theorem 3-3.
To show that this is an HCF-ring, let us take any two elements of 7'; they have the
form fzm, gz~ and in fact we may take m = n, without loss of generality. Now

f,ges = Rlz,yl,

they have an HOF in S, say d, and if this is of degree k then dz—Fe P and this is easily

-

verified to be the FIOF of fz~" and gz~ in T'. Thus 7' is an HCF-ring, and by transfinite
induetion, so is U = Z(R). Together with the pre-Bezout property this shows Z(R) to
be o Bezout ring, by Proposition 3-2.

o prove (ii) assume that Z(R) is a PLD, then any non-unit 4 € in R is still a non-
anit in #(R) and so may be written as a product of atoms. These factors must le in
R and are again atoms in K. Hence  is atomic and being a Schreier ring it is a urD
(by Theorem 2-3). Conv ersely, if Risa UFD, itis atomic and we need only check that
this property is preserved in the construction of Theorem 3-3. Clearly the ring 7
constructed there i atomic and U is the wnion of an ascending well-ordered system of
atomic rings. Let ae U and take an inert atomic subring of U containing . Then o
san be written as a product of atoms in this subring and this atomic factorization still
holds good in U. Hence U = #(R) is atomic and Bezout, i.e. it is a PID, as asserted.

This theorem gives us OUr construction of Bezout rings; in detail we have

Corornany L. Bvery HOY-ring can be inertly embedded in o Bezout rimg and every
UTD can be inertly embedded in a PLD. _

We can now also substantiate the remark made after Proposition 3-2:

CoronLAryY 2. There cxists a pre-Bezout ring which is a Schrever ring but not a Bezout
FING.

Tor let B be a Schreier ring which is not an H(F-ring and form its pre-Bezout
huli Z(R). By Theorem 33 this is pre-Bezout and Schreier; if it were a Bezout ring,
then by Theorem 3-3 (i), £ would be an TICH-ring, which is not the case.

Thus we have the following relation between Schreier rings and their pre-Bezout
hulls, in increasing order of generality:

U¥FD
PID

Schreier ring
pre-Bezout ring

HCF-ring

Bezout ring

Ring:

pre-Bezout hull:

An inert subring of a pre-Bezout ring need not be Schreier. This is shown by the

following example (due to G. M. Bergman) of a pre-Bezout ring, which is not Schreier.

1et G be the additive semigroup of all rationals > O andreals = 1, form the semigroup

algebra F{6/] and let F(@&) be the ring obtained by adjoining inverses of all elements

with non-zero constant term. 'hen no two non-units of F(@) are coprime: any two

have a common factor of the form (a) for sufficiently small o.. But the Schreier property

fails: consider the equation (1)+(2) = (\2)+ (3 \/2) in G. If (1) were primal, say
(1) = (@) + (1 —a),(2) = (J2—a)+(2— 2+ @), then a miust be rational, hence

NJ2—a > 1, 2—A2+a > 1, J2—a <1,

o contradiction. Thus ¢ does not have the Schreier property, hence neither does F(().

i.e.

¢

j
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4. Ultraproducts. The construction of Bezout rings from HCF-rings in the last sec-
tion was a particularly economical one. We now come to a second way of forming
Bezout rings, which by comparison is particularly prodigal, namely as ultraproducts.
The formation of ultraproducts preserves elementary y_properties (cf. e.g. (2), V.5)
and since Bezout nngs can clearly be defined by elementary qentenbe&W
product of Bezout rings is again a Bezout ring. The interest of this method resides in
the fact that starting with a family of PIDs we obtain Bezout rings from them by
forming ul*rraproducts and these are not in general PIDs. Examples of this pheno-
menon confirm the rather plausible surmise that the class of PIDs cannot be defined
by elementary sentences.

We briefly recall the definition of ultraproducts, in a form adapted to the present
context. Let B, (1€ 1) be any family of rings and let P = 1R, be their direct product,
with projections e,: > — R,. With each element xe P we associate its zero-set

N(x) =
Let & be a filter on the index-set 1 and define a subset af
a(P) = {we P|N(x)e D}

It is easily seen that a = q(%) is an ideal in P and the quotient /a is called the reduced
product associated with the filter 2, and is also written P/%. We shall only be concerned
with the case where & is an ultrafilter on 7, in which case P[D is called an wltraproduct
of the R, or in case all the E; are equal to R, an wulirapower of K. Now the basic ultra-
product theorem (cf. e.g Th eorem V. 5-1) asserts that an ‘an elementary property holds
in the ultraproduct /% preclsely if it holdsin the factors 2, for « running over some set
of 2. In particular, any elementary property holding in all the factors also holds in the
ultraproduct. If & is a principal ultrafilter, P/ is isomorphic to one of the factors R,
so this case gives nothing of interest and may be excluded.

Let us consider the special case of an ultrapower, B!/% more closely. We remark that
the diagonal mapping R — R combined with the canonical homomorphism RT — RI|D
gives a canonical embedding R R, (15)

which is actually an elementary embedding ((2), V1. 3), as is easily verified. As a
consequence we have

{te I|we; = 0}.

2) of P by the equation

Prorosition 4-1. Let R be a ring in which any element has only a finite number of
factors. Then the embedding (15) of R in any ultrapower is inert.

Of course this result may also be verified directly, a task which is left to the reader.

To obtain a concrete example, let R be the ultrapower of the ring Z of integers over
a countable index-set (with respect to a non-principal ultrafilter) and write

@ = (py, 5 05, PIPEDR, - )s

are the rational primes in ascending order. Then x (more precisely,
its residue class in Z7/9) is divisible by any non-zero element of Z. Thus we obtain
a subring 7' of R by taking all polynomials in 2 with rational coefficients, except for
the constant term which is in Z. We observe that 7' is a Bezout mw Foriff,ge Tf We_

PR WAL b gl Wt e
W W/ /y(//y’”yw

where py, s, ...
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may assume that f, 7 have no common factor of positive degree in x. Hence there exist
u, v, €T such that
Ju—gv =",

where 7y is a non-zero integer. Now if the constant terms of f, g are o, ff respectively, say

f=a+fi, g=F+g;

where [, g, have zero constant term, then

a=f=(fijy)ye/T +gT,

and similarly fefl'+g7', hence & = (o, ) divides y. 1t follows that & divides f,g
and so 67 = fT'+¢7T.

The ring 7' is an example of & Bezout ring which cannot be expressed as an ascend-
ing union of PIDs. For if it could be so expressed, then any finite subset of 7" would be
contained in a PID; choose a prime p and assume that there is a subring § of 7" which
contains x and p and is a PID. Let 28 + pS = dS, then d must be 1 or p, since these are
the only factors of p, even in 7. If d = 1, then 2u -+ pv = 1 for some w, v ¢S and this
leads to a contradiction, by equating the constant terms; hence d = p, i.e. z/peS.
‘The same argument shows that if x/pme S, then z/p"+teS. Thus § contains x,z/p,
x[p?%, ..., and by hypothesis the ideal generated by these elements in S is principal.
Let f be a generator, then W8+ (2)p) S+ oo = 1S,

hence 27"+ (x/2) T+ ... = fT', which is a contradiction.

We algo note that 7’ itself cannot be expressed as an ultraproduct in a non-trivial
way, because it is countable, whereas any non-trivial ultraproduct is uncountable,
by the results of (2), VL. 6. However, 7' may be expressed in terms of Steinitz numbers
(‘supernatural’ numbers) by interpreting x as Ilpy°, taken over all primes. This in-
terpretation also suggests other Bezout rings, which can be formed in this way, and
it may be instructive to compare these with the inert subrings of the ultrapower
ZD.

Finally, we note that the ring 7' constructed here is an example of a2 Bezout ring
which is not totally integrally closed, because ap= <7 for all n, yet p~1¢ 7.
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