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Let Dbea commutatwe mtegml &ammn wzth xdmtxty, Jet DIX] dvemmea
‘the ring of polymmmls in one vanable thh coeﬂimen&:s in I}‘ and% 1e? iy
denote the guotient field Aof D For a polynomial f € K[X], the ﬂ-mmmt of
£, denoted by Ay, is defined to be the fractiomal ideal of [ genersted by tha
coefficients of f. Thus, 47 = (ag, a1, +0a) D xff =ag+oy X+t aam.m"
Let f and g be two polynomials{iﬁ KX I and let fg denote their product.
Several mathematicians, including Gauss and Prifer [11], have studied the
connection between ’the mm;ent ideals 4 . Ag}, zmd Ago. For any imtegral
domain D, it is always the case that Ag, C AgAg. In her c'mizsa@rmtmn ot the
University of Chicago {13}, Tsang studied polynomisals f € R{X }, where R in
2 commutative ring with identity, such that AgAy = Ay, for ol g € RIX].
She calieci such polynomials Geussign. Dan Anderson [IL obaermd that aver
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1570 " ‘ MOTT, MASHIER, AND ZAFRULLAH

| a commutative ring with identity, a polynoﬁiia.l f is Gaussian if 4y is locally
" principal. In pax;ticuiar; f is Gaussian if 4y is invertible. Tsang proved that
an integral domain Disa Pﬁifer domain if and only if 4 f{é = AshAg for all
polynomials f,g;e D[X ]. Although she never published her result, R. Gilmer
obtained the result independently and published it in [6] and {7, p. 2471,
The purpose of i;his paper is td extén& the invesﬂ;igaéiem listed above.

- For a ring R, we use B* to denote .ths.e set of nonzero elements of R
1. POLYNOMIALS WITH INVERTIBLE CONTENT

We begin by making the following simple observation about the sets
$ = {f € K[X]|A; is investible } and Sp = SN D[X].
PROPOSITION 1.1. Thesets § a,mi Sp are closed under multiplication. i

Proof. Immediate since Ag, = AyA, and since a product of invertible

ideals is invertible.

Forf,g € § define f ~ g.if and only if Ay = Ay. Then the i*e}laﬁxon
~ is an equivalence relation on S. Let S/ ~ denote the set of equivaience
classes of elements of S undex; the relation ~ and let { f] denote the class of -

all ﬁolynomials g € S such that f ~ g. Next, déﬁne s binary operation o on
| S/ ~ by the equation [f] o [g] = [fg]- It is imﬁgﬁiate that o is well-defined.

In fact, we observe the following.

PROPOSITION 1.2. The set of equivalence classes 5/ ~ forms an
abelian group under the binary operation ¢. Moreover, (&7 :Fv, o) is isoinor-
phic to the group I(D) of all invertible fractional ideals of D.

Proof. Obviously o is associative and the identity in (5/ ~, ) is [1] = [A],
where h is any polynomial in K[X] such that A; = D.:We need only verify



o

Y

CONTENTS oF ?OLYNGMIALS AND INVERTIBILITY 1371

the existence of inverses in (S/ ~ o) ¥fes yAfF = (ag, ajqe am}b is in-

vertible and 1 = E a;a; where a; €[D: Aflg=1{te Kita, € Dforalli} =
i=0 .

, Af l_' Let ¢ E K{X}_there g=0ay+a} X et ap X", Clearly Ag = ;;3

Define the map 6 : (S/ ~,0) — I(D) by #([f]) = Ag. Since [f] = [g] if and
only if Ap = Ag, we see that 8 is both well-defined and injective‘ Morecver, #
is sm;]ectzve since any ideal I € I (D) is ﬁmtely generated, and henc% I=Ag
for suitable f € S. Fma,lly, 6‘ is & homomorphsm by Pmpomtlon 1.1

Cleszly 6 maps {[k]ik € K*} onto the subgroup P(D) of a.ll prmc:pal

- fractmnal ideals of D. Therefore, we have the next co*olla.r:y

COR@LLARY 1.3. The factor, group (s/ ~)/ {[k]lk € K*} is isomorphic
to the Picard group I(D)/P(D) = Pic(D): '

REMARKS. (1) Though the groups S/ ~ and I(D) are isomorphic, the

sets S/ ~ and I(D) do not have identical properties; for example, for any

fractional ideals A, B of D such that AB € I(D), we have that both 4 and
B are in I(D). But we show in Theorem 1.5 that S/ ~ haﬂ thxs pmpe;.tw if

and only if Dis mtegmlly closed.

(2) For a, ﬁmtely generated R-module M, where R is a commutative Ting
with identity, let u(M) dmate the minimum number of generators of M.
Then tlhe isoinorphism between thé groups S/ ~ and I(D) can be used to
make thé beautiful cbservation t>ha,t if T is a finitely generated ideal Md Jis )
an invertible ideal, then y(.l J ) < p(I)+ u(] ) ~ 1. Indeed, Dan Andemaq /] /

used this observa.txon to obtﬁun severa.l nice conclusions about the minimum

number of generators of a product of mvert:able ideals.

)

Let us determine conditions that guarant'eé that S is a saturated multi-

plicatively closed set in K[X]. We begin with the following observation.
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PROPOSITION 1.4. Su‘ppwe be K is integral over D. Then be D
and oalyif the fractionsl ideal {1,8)D is mvertnble,

Pmof. Cleatiy 1f b € D, then (1,5)D = D. Conversely, suppose {1,5)
is invertible. Then there are elemmts e,d € (1,5)1 such that ¢ +bd = 1.
We note that ¢, d, be and bd are in D. Since b is mtegral over D b satisfies a

monic polynomial in DiX]. I-Ienoe, we hmre the equatzon
e +‘a,,,.Lb”’"1 4o tag=0, where each a € D.

By multiplying equation (1) by d"*~}, we conclude that b’fd”“‘lr € D. More-
over, ¢ + bd = 1 implies that cA + (bd)“"“Il = 1 where A € D. Therefore,
Cb=beA 4+ bl g D as we mshed to prove:

Recall that o multaphcatwely ciosed set T in a commutatwe ring R is
seid to be ;satumt;ed if fq;' a,beR, abe T iroplies a € T and b € 7.

THEOREM 1.5. Let D be an integral domain with quotient field K.
Then the following are equivalent: |

» (1) D is integrally closed in K.

(2)Sisa sa,turated multiplicative system in K {X].

(3) SQ is a saturated multiplicative system in D[X].

{(4) i § € D{X] is linear and g € D[X] is such‘thaf fg €5, i:he?a both f
and g sre in S. ’ | '
B3)Ha € K ‘is inf;egral over D, then the fractional ideal (1,0)I? is
invertible. | | ' ‘

(6) If f,g € K[X] axe such that Ag, C D, then ApAg € D.

Proof. (1) implies (2). Let f,g € K [X) be such that fg € S. Since D

is integrally closed, D = [}V is an intersection of valuation o. .ings Vi of
[+ .

e



GGRTENTS OF POLYNOMIALS AND IlWEETIBILITY 1573

CDCHA xsammfractmshdealofﬂ define A“’ = ﬂAVa Inp@,ﬁxmm"s,
an is an inpveriible fractmal ideal of D, then we hmre A¥ o= ﬂAVm =
A(ﬂVa) AD = A. Thus, since Ay, is invertible, we have that Agg =
AgF = (AgYe = (XAVaXAgVa) becasse ArgVe = (Arva)Ag¥a)
| fm' mh va.matxm d@mam Vo (recall that a valuation démmn s a Prifer
domsin). But then

ﬂm FVaX(AgVa) 2 (ﬂAfva,) (nA,V@) A‘}’A‘*‘ D Aghg.

As A.fg is slways contained in AyAy, we conclude AgAy = Ag,. The invert-
xbxhty ofAfgmphes that of Af a;nd Ag. Thereﬁme, fe ﬁamig € &

C}eatiy (%) mphes {3) and {3) nnphes (4} So we pmve {4} implies {3’:%}
Assume a is mteg,mi over p. Then a satxsﬁes a monic polynmmaﬁ f € @{
| ﬁencef:z(.x a)gwbemgeKEX] Has= a/bwhma,mz; then m
d«a&rmg the demmmnatom of the coeﬁc;ents we ohfim the eggm@m

. bdf #(bX a)dg); wi:ere» deD*.

Wow AM MA; Mﬂmcefxsmamc and sinice bd # O, we have bdf € &
Therefore, by (4), (bX ~a} € § and then Ag,}g...a = {a, B} D invertible implics
@:m (t,a}l} is mvmhble.. .

‘Proposition : 1.4 shws (5) implies (1}. To prove (1} mphes {6}, assurne
f,g € DIX] ave such that 4y, € D. Sinece D is integrally closed, D = g a YV,

where Vy is a valuation overring of D for each a. ﬁmce L
Aghg S (AgAg)” = (Y AsAgVe
[ 4
= (W As Vo) € [ Y DVa) = D.
@ B+ .

Finally, (8) implies (1). Let « € K be integral over D. Then o saticfies
some mottie polynomial f € D[X]. Hence f = (X ~ a)g where ¢ € K{X].
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Then Ag = D since fis mpmc ‘Therefore 'by (6), A X—»aAg C D. Eu’&; since

AX gy 2 D and Ag 2 D we ha.ve AX_*Q{AQ = D and Ax_o = (Lo}l s
nvextzble AR
The followmg lemma. will be useful in the next theorem.’

LEMMA 1 6 Let D be an integral doma.m a.nd let D denote the mtewal
closm'e in the quotient field K of D. Then §p = 52, the satumtmn of Sp

in D[X]

Proof. Since Sp is satura.ted and Sp C Sp, we have that S° C $p. Con-

versely, suppose f € Sp D- Smce A fD is mvertlble, we can choose ‘

g€ KX} aach thet AggD = D Let ND Ah € D{X]}Ahﬁ = D} amd“ '

let ND {he ﬁ[X]lAhD D} Then N.D is the sa.turahon of ND in DX},

see, for mstance, the proof of Theorem 3in [8} Thus f gh €N D for some

ke DIX1. By cleanng denommators of g a,nd h we obt.am that fke Sp for

somekeD[X] ThustS’DandhenceSD-—Sﬁ

’8] Gﬁmer and Hoffman remark that at that time there were two

| chax‘actemza.tmns of Priifer -dumams in terms @f polynoxmala We Tist m’ﬁ*her'k .

— =

o

RE imegralckosure in the quotient ﬁeld K of D. Then the followmg are muw&lent

cha.mctenzatmns in the next, theorem

THEOREM 1.7. Let }J be an mtegral dommn a.nd let D cienot@ the

{1)D is va‘; Pifﬁfer domain.: v
(2) 53 =DIXIMO}- |
(3) D[X}Sp is @ ﬁeld

(4) Each HONZETo element o€ K satisfies a polynomlal fe DX } such
‘é;ha.t AgD s invertible.
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Proof. (1) implies {2} follows from Lemma 1.6 and
finitely generated ideal of D is invertible.
The fact D[X]g, = D[X]ge o ¥ ields that
that (3) implies {(4). Every o € K" satisfies some nonzero p

§ € D[X). Therefore, since D[{X]g, is a field, |

s € S5y, Then o satisfles s

i
Finally, (4) implies (1). To prove that Dis 2 Prifer domain we s

show that each nonzero ideal o© f D with two generators s

e a g e
ARI WAL

{a,b)D be such an ideal where, without loss of generality, wo ©
o # 0 and b # 0. Let o = a/b. Then by hypothesis, « satisfics

f € D[X] where AfD) s invertible. Then f = (X — a)g where g
Then for a suitable d € D*,we get df = (bX- g dg) where dg & 1/

1.5 1

that df € Sp. Since D is integrally closed, Theorem

£

saturated. Hence bX — a € §p and (g, 21D is invertible.

I ..

e KAl
{X] Nol

REMARK. I D is a 1-dunensional i‘mrﬁwmfm domain then

Dedekind and hence Priffer domain. Therefore, DiXle, a Held.
For the next two resuits.‘ let us set the hypothesis, notation. s 13 berpn
nology. Assume D is a domain such that D = () V, where {Va ! is & fam
X
of valuation overrings of . For a fractional ideal T of I, de e (VI
[
We say that an ideal T is w-invertible # (1P = D
h

PROPOSITION 1.8. Suppose f € DX

] is a nonzexo polyno

that (Ag, )Y = Agy forellg € DX} Then [ is Gaussian.

Proof. We observe that for any g € U[X]

ﬂ*’a% QAf

A; P {Af‘q\“‘

+
INJ

M“rv{ g

)
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Hence A, = AfAy and f is Gaussian.
THEOREM 1.9. Let f € D{X] be a nonzero polynomial such that
{1y Ay is w-invertible.

{2} A"}“} = (Ay)¥ for some ¢ € KX\

Then I is a Prifer domain.

Proof. First we assert that A § is invertible. We have that

Apdg = Ay = (A =[Apg¥a = (ArAyVa
o &
e Do NV g L. T
= (AfAg)Y = (Af(Ag)")" = (ApAL )" =D
Thus Ay is invertible.

Let h € DIX]. By (3), we have that A = (Agp) = (ApApy =
(Af(Ay 2 zi,f{x“i;}_}w 2 ApAp 2 Agp Hence ApAp = Ap(Ap . As Ay
i invertible, we have Ay = (A4)”. Thus, (App)¥ = Apg for all h k¢ DAY
By Proposition 1.8, every h € D[X] is Gaussian. Tsang’s theorem then tells
us that D is a Pritfer domain.

.

If A is a fractional ideal of a domain D, define Ay = (A=) and say

¢]

that A4 is a v-ideal if A = Ay, and A is v-invertible if {A‘A.“if}v = . See (7]

for many well known properties of the v-operation.

Suppose I is a Keull domain. Then D = [ Va where {V,} is the family
&
of DVE’s obtained by localizations of D at height one prime idesls, We take

the w-operation with respect to this family.
COROLLARY 1.10. Let D be a Krull domain. Suppose that there is
a nonzero polynomial f € DX} such that (Agg) = Ay, for all g € DIX)

Then [ is a Dedekind domain.
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Proof. Since a Krull domein is completely integrally closed, each fijniteiy
generated ideal is v-invertible [7, p. 421] with a v-inverse of finite type.
Moreover, the w-operation in this case is same as the v-operation [7, p. 542},
Hence conditions (1) and (2) of Theorem 1.9 are satisfied; since m%xdit_izm
(3) is assumed by hypothesis, D is a Priifer domain. A domain that is both
Pritfer and Krull is & Dedekind domain {7, p. 536]. 4. |

Aisa fractional ideal of 5 domain D), define A; = UB,, where B
runs through all finitely generated D-submodules of A. Then A is seid to
‘be t-invertible if (AA~1); = D. An integral domain D is called a Priifer
v-multiplication domain (PVMD) if the set H{D) of v-idesls of finite type
is 5 group under the 'bv—multiplication: (AB)y = (A,,B,,-}v = (A;,-B}v, or
equivalently, if each finitely generated fractional ideal of D is t-invertible. If
D is & PVMD, then there is a family {Va} of essential valuation overrings of
D such that D = QVQ, [91.

COROLLARY 1.11. bf..aet D be a PVMD. Suppose t}gefe exists a nonzero
polynomial f € D{X] such that (4.} = Agg forallg € DIX]. Then D is
a Prifer domain. ’ '

Proof. Sixme the w-operation with respect to {Va} is equivalent to v-
operation [7, p. 553] and since D is & PVMD, we have con&itions {1), (2)
and (3) of Theorem 1.9.

2. POLYNOMIALS WITH v-INVERTIBLE CONTENT

In this section we prove several results for polynomials f where Ay is
v-invertible; these results are parallel to those -Obta,ined“ in the preceeding

section. Our first observation, an immediate corollary of Theorem 1.5, ex-
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tends Gauss’ Lemma and Theorem 34.8 of [7} The resu.lt is due origibally
to Querré [12], we offer a new proof | |

PRQPOSITION 2.1. An mtegral domain D is mﬁegraﬁiy c’iosed if and
' Ollly:.lf for any two poiynom.xa.'ls fr9 € R’[X], {Afge = (Adg)v.

Proof I D is integrally closed, D = ﬂV where each Va is 2 va,]nahon
‘ averrmg of D. Then

(Afm = (AseVa) = (WArAg)Va = (A5 Ag)".

 But then
(Afglv - ((Afg)g)” = ((Ang)“’)y = (Afhg)o-

Conversely, suppose (Afglv = (Ang),, Then Afg C D if and only if
AsAg C D. Therefore, by (6) of Theorem 1.5, D is mtegra.lly closed.

PROPOSITION 2.2. Let D be an integral domain and suppose |
feDIX ]\{0} If Af is 'v—mvertlble, then for each polynormal g € DIX]\{0},
(Aggdo = (AgAgho.

Proof: Assume that f and’ g are as stated in the hypothesis. By Dedekind-
Mertens Lemma [6] ot [7, p. 343, there is a positive integer & such that

§+1Ag = A}’A fg- Mﬁltiplying by ((A f)"l)& and ‘appiying the v—op@mtion,
~ we conclude (A ng),, = (Asg)v- ’ |

'COROLLARY 2. 3. The set Vp = { fe DX ][Af is v-invertible} is closed
under multlphca,tlon._ )

Pfoof: Suppose f,g € Vp. Then (Afg)v = (ApAg)y by Proposition 2.2.
But then (47147 (Age)0) = ((A}'lAf)(A;lAg))” =D.

Now we obtain a result analogous to Theorem 1.5.
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THEOREM 2.4. The set Vjy is saturated if and only if D is integrally
closed.
Proof: If D is integrally closed and fg¢ € Vp, then by Proposition 2.1
1

AV = (ArA, t since e winvertible for ¢ s (Ae 370 we
(Afghv = (AjAg)y. But since Ap, is v-invertible, for C = (Ag,)7", we

conclude (A5,C)p = D = (A AgC)y, so both Ag and 4, are v-invertible.

Conversely, suppose Vp is saturated and suppose o = a/b € K* 15 mnte-
gral over ID where a,b € D*. Then « satisfies a monic polynomial f € D[X]
and f = (X — a)g where ¢ € K[X]. Clearing denominators we have dbf =
(bX — a)(dg), where dg € D[X|. But then Ags = dbAy = dbD since f is

monic. Hence, (bX — a)dg € Vp and since Vp is saturated, (X — a) =

bX —a € Vp so that Ay _, is v-invertible. But D = (A} = (A y_q)g e
(Ax.aAg)y by Proposition 2.2. Thus, A x_a)4g & D. Therefore, the prod-

since o is in the product, we conclude o € D.

Next we prove a theorem that is closely related to Theorem 1.7. Recall
that a v-domain is an integral domain for which (AA™ Yy = D for all finitely

generated v-ideals 4 of D [3].

THEOREM 2.5. Suppose D is an integrally closed domain. Then the

following are equivalent:
(1) D is a v-domain.
(2) Vp = DIX]\{0}.
{(3) D[X]y, is a field.

(4) Each nonzero element o € K satisfies a polynomial f € D[X] such

that A f is v-invertible.
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Proof: First. we show (1) implies (2). ¥ f € D[X]*, then (Af)m— is a

v-ideal Of finite type. Since D) is a v-dammn, Ay is v-invertible so f € Vp.

Clearly (2) implies (3) and the pmof that (3) zm;:ahes {4) is similar to that

ip. Theorem 1.7.

REMARK. We observe that (3) implies (4) for an arbitrary integral do- ‘

main.

To prove (4) implies (1) we need the following lemma and then the proof
follows the same pattern as in Theorem 1.7 ‘where invertible is replaced by
' o-invertible. |
LEMMA 2.6. An integral domain D is 2 v-domain if and only if every

nonzero fractional ideal with two generators is v-invertible.

Proof, Obviously if D is a y-domain then every two generated nonzero

ideal is v-invertible.

Conversely, suppose that every nonzero ideal with two generators is v-
invertible. Consider an ideal thh three generators: A (z1,z9,23) 0. Now
foridesls I, J, K in any comiputative ring R, (I+J+K)(IK+IJ+JK) = (J+
K)K + INI+ ) so (21,33, 23)(z122, 2193, 82%3) = (1, 22)(%2, za)(®1,%3)-
Bem.use each factor of the right hand side is v-invertible by hyp@thesm, so
is each factor of the left hand side. From this, we conclude (z1,29,23) is

v-invertible. Continue by induction.

REMARXK. The above argument is a version of an argument that Prifer
[11, p. 7] used to prove that a domain is a Prifer dmna,m if and only if
each xdeal with two ggnerators is invertible. Rema.rka.ble here is the fact that ..
using the #-invertible versioﬁ of the argument we ca.n prove that an integral
domain D is a PVMD if and only if every nonzero ideal vﬁth two generators
is t-jnvertible. (Also see lemma 1.7 of [10]).
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3. POLYNOMIALS WITH t-INVERTIBLE CONTENT,

New 16 us define T = {f € K{xzw is tiovestible} asd Tp -
TN ﬁ*{X} Usmg axguments a;miim' m those in mesmoﬂ 1.1, Gmmﬂmy
- ,3 Them?em 1§9andTbeomm24wemshwaba$deTg are closed
undax mﬂtm’hcatm and TD is satm'ated if and only if D is m{;egmﬁv closed.

. THEOREM 3.1. For an integrally cimad_dom@m D the foilowing are
(1) D is a PYMD.
(2) Tp = DIX]\{0}-
(3) DIXir, is 2 Beld.
(4) Bach o € K* satisfies  polynomial f € D[X] such that Ay is &
vertible. -
For this pmof we need only apply lemma 1.7 of [10] or the observation in
the preceding remark.

We conclde thié-pa.per with the observation that an eqmivalém:e relation
may be defined on T'by f ~ g if and only if (Ag): = (Aglt- Then T/ ~ is
a group under the operation {flolg) = ifg]. This @.‘mlp is associated o the
t-class group of D. For tim definition of tbae #-class group and mhm{l resuits,
see 4] or 4. | - | o
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