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Abstract. Call a t-ideal I of an integral domain R well-behaved
if IRS is a t-ideal in RS for every multiplicatively closed subset S
of R that is disjoint from I. We show that the set of well-behaved
t-ideals has maximal elements and use the induced star operation
to study the almost Krull domains (domains whose localizations
are Krull) introduced by E. Pirtle.

To the memory of Robert Gilmer

1. Introduction.

Let R be a domain. Recall that an ideal maximal in the set of t-ideals
of R is called a maximal t-ideal. (Background on the t- and other star
operations is reviewed below.) In [20], the second author called a prime
t-ideal of a domain R well-behaved if PRP is a t-ideal in RP . It is easy
to see that if P is well behaved in R, then PRS is a t-ideal in RS for
each multiplicatively closed subset of R disjoint from P (Lemma 2.1).
Hence we shall call a t-ideal I of R well-behaved if IRS is a t-ideal for
every multiplicatively closed subset of R that is disjoint from I. Also
following [20], we say that R itself is well-behaved if each t-prime of
R is well-behaved. We call a t-ideal P of R a maximal well-behaved
t-ideal if P is well behaved and is not properly contained in a larger
well-behaved t-ideal. Examples in [20] show that maximal well-behaved
t-ideals need not be maximal t-ideals.

In Section 2, we show that maximal well-behaved t-ideals are prime
(Lemma 2.2), that each well-behaved t-ideal of R is contained in a
maximal one, and that R =

⋂
P∈P RP , where P is the set of maximal

well-behaved t-ideals (Theorem 2.3). By [1, Theorem 1] this induces
a star operation � on R, given by I� =

⋂
P∈P IRP for each nonzero
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fractional ideal I of R. In the remainder of the paper we use this star
operation to characterize certain types of behavior. For example, in
Theorem 2.9 we prove that every maximal t-ideal of R is well-behaved
if and only if � ≤ t, that is, I� ⊆ I t for each nonzero fractional ideal I
of R.

In Section 3 we provide a condition which is necessary for well-
behavedness of R to pass to the polynomial ring R[x], and we give
an example showing that the condition need not hold.

In Section 4 we study the almost Krull (meaning locally Krull) do-
mains introduced by E. Pirtle [19]. Pirtle conjectured that an almost
Krull domain whose height-one prime ideals are all divisorial is a Krull
domain. Using examples of the type studied in [7], J. Arnold and R.
Matsuda [5] showed that the conjecture is false. More precisely, they
showed that, in order to force an almost Krull domain R to be Krull
it is necessary not only that the height-one primes be divisorial but
also that R be a Prüfer v-multiplication domain (PvMD) and that,
moreover, this latter condition did not follow from the former. Thus
our purpose in Section 4 is to study these conditions. For the PvMD-
condition, we are able to carry out our study in the weaker class of
domains whose localizations are PvMDs; we show that such a domain
R is a PvMD if and only if the star operations �, w, t coincide on R
(Theorem 4.7). For divisoriality we show in Theorem 4.9 that, for a
height-one prime Q in an almost Krull domain, Q is divisorial if and
only if Q contains a divisorial ideal contained in no other height-one
prime if and only if Q is �-invertible.

We close this introduction by recalling the basic facts about star
operations that we shall need. Let R be a domain with quotient field
K. Denote by F(R) the set of nonzero fractional ideals of R. A star
operation on R is then a mapping I 7→ I? of F(R) into F(R) such that
for all nonzero a ∈ K and I, J ∈ F(R),

(1) (aR)? = aR and aI? = (aI)?;
(2) I ⊆ I?, and I ⊆ J implies I? ⊆ J?; and
(3) (I?)? = I?.

It is well known that if ? is a star operation, then one may associate
to ? a star operation ?f by setting, for I ∈ F(R), I?f =

⋃
J?, where

the union is taken over the nonzero finitely generated subideals J of
I. A star operation ? has finite type if ? = ?f . If ? does have finite
type, then (a) each nonzero ? ideal is contained in a maximal one,
(b) maximal ?-ideals are prime, and (c) a prime ideal minimal over a
?-ideal is also a ?-ideal (called a ?-prime). The most important non-
trivial star operations, and, with the exception of the star operation
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� defined above, the only ones we shall use here are the v, t, and w
operations: For I ∈ F(R), put I−1 = (R : I) (= {u ∈ K | uI ⊆ R})
and Iv = (I−1)−1; t = vf ; and Iw =

⋂
IRP , where the intersection is

taken over the maximal t-ideals P of R.

2. Well-behaved prime t-ideals and their induced star
operation.

Lemma 2.1. Let P be a prime ideal of a domain R such that PRP is
a t-ideal. Then PRS is a t-ideal for each multiplicatively closed subset
S of R that is disjoint from P .

Proof. We have PRS = PRP ∩ RS. It is well-known that this implies
that PRS is a t-prime. �

It is possible to have t-primes P ⊂ M with PRM a t-prime of RM

but P not well-behaved–see Example 2.5.

Lemma 2.2. Let R be a domain.

(1) Let I be a well-behaved t-ideal in R, and suppose that P is a
prime minimal over I. Then P is also a well-behaved t-ideal.

(2) A maximal well-behaved t-ideal is prime.
(3) Let {Jα} be a chain of well-behaved t-ideals. Then

⋃
Jα is also

a well-behaved t-ideal.

Proof. (1) PRP is minimal over the t-ideal IRP and hence is a t-ideal
in RP .

(2) This follows from (1).
(3) Let J =

⋃
Jα, and let S be a multiplicatively closed set disjoint

from J . Then JRS =
⋃

(JαRS) is the union of a chain of t-ideals in RS

and is therefore a t-ideal. Hence J is well-behaved. �

Theorem 2.3. Let R be a domain. Then

(1) every well-behaved t-ideal of R is contained in a maximal well-
behaved t-ideal, and

(2) R =
⋂
{RP | P is a maximal well-behaved t-ideal}.

Proof. For (1), apply Lemma 2.2 and Zorn’s lemma. For (2), we pro-
ceed contrapositively. Thus let x ∈ qf(R) \ R so that (R :R x) is a
proper t-ideal of R. Let Q be a prime minimal over (R :R x). Then
QRQ is minimal over the t-ideal (R :R x)RQ = (RQ :RQ

x), and hence
QRQ is a t-prime in RQ. Thus Q is a well-behaved t-ideal, and, by
Lemma 2.2, Q is contained in some maximal well-behaved t-ideal P .
Since (R :R x) ⊆ P , we then have x /∈ RP , as desired. �
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Let I be a well-behaved t-ideal in a domain R, and let S be a mul-
tiplicatively closed subset of R disjoint from I. Then IRS is a well-
behaved t-ideal of RS, and, applying Theorem 2.3 we have IRS con-
tained in a maximal well-behaved t-prime of RS. Of course, this t-prime
is of the form PRS for some well-behaved t-prime P of R. However,
although P is maximal among well-behaved t-primes disjoint from S,
P need not be a maximal well-behaved t-ideal:

Example 2.4. Let x, y, z be indeterminates over a field k, and set D =
k[x, y, z](y,z), V = k[x, y, z](y) = DyD, W = k[x, z](x) + yV , and R =
D ∩W . Then W is a 2-dimensional valuation domain with maximal
ideal xW and height-one prime yV . Let M = (y, z)D∩R, N = xW∩R,
and P = yV ∩ R = yV ∩D = yD. It is easy to see that P ⊆ M ∩N .
Since k[x, y, z] ⊆ R ⊆ D, it is clear that RM = D. We claim that
RN = W . Since RN = DR\N ∩W , it suffices to show that DR\N = V .
If r ∈ R \ N , then r /∈ P and hence r /∈ yV . Thus r−1 ∈ V , and we
have DR\N ⊆ V . For the reverse inclusion, it suffices to show that if
g ∈ k[x, y, z]\yk[x, y, z], then g−1 ∈ DR\N . Since g /∈ yV =

⋂∞
n=1 x

nW ,
we may write g = xkw for some w ∈ W \ xW and k ≥ 0. Since w =
gx−k ∈ D, we then have w ∈ R \ N and then g−1 = x−kw−1 ∈ DR\N ,
as desired.

Thus, taking S = R \ M above, we have that PRS is a maximal
well behaved t-prime in the Krull domain RS = D. (It is well-known
that the only t-primes in a Krull domain are the height-one primes.)
However, P ⊂ N , and N is a well-behaved t-prime in R since NRN is
automatically a t-ideal in the valuation domain RN = W . �

As already mentioned, examples of non-well-behaved domains may
be found in [20]. Here we give a particularly simple example and then
tweak it to illustrate the comment following Lemma 2.1.

Example 2.5. Let x, y be indeterminates over Q, T = Q[x, y], P =
(x, y)T , and R = Z + P . By standard properties of pullbacks, P is
divisorial and therefore a t-prime of R. However, PRP = PTP is not a
t-ideal in the Krull domain RP = TP .

To illustrate the statement following Lemma 2.1, we localize. Thus
let p be prime in Z and M = (p) + P . Then PRM is divisorial in
RM = ZpZ + MTP , and hence PRM = PTP is a t-ideal of RM , but
P (RM)PRP

= PRP = PTP is not a t-ideal of RP = TP . �

In (both parts of) Example 2.5, the maximal t-ideals are (principal
and hence) well-behaved. It is more difficult to give examples of max-
imal t-ideals that are not well-behaved. Again, these are discussed in
[20]. For our purposes we cite the Heinzer-Ohm example of an essential
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domain that is not a PvMD [13]. It is not difficult to show that, in fact,
this example is an almost Krull domain R with a height-two maximal
t-ideal M , and hence MRM cannot be a t-ideal in RM . Thus M is not
well-behaved.

For convenience, we recall the star operation � from the introduction.

Notation 2.6. Let R be a domain, and denote by P the set of maximal
well-behaved t-ideals of R. Then, for a nonzero fractional ideal I of R,
set I� =

⋂
P∈P IRP .

The next three results give some simple facts about �.

Lemma 2.7. Let R be a domain. Then:

(1) P � = P for each P ∈ P.
(2) If Q is a is a nonzero prime of R, then Q ⊆ P for some P ∈ P

if and only if Q� = Q.
(3) A maximal t-ideal M of R is well-behaved if and only if M� =

M .
(4) I�RP = IRP for each nonzero ideal I of R and P ∈ P.

Proof. (1) This follows from [1, Theorem 1].
(2) If Q ⊆ P ∈ P , then Q� ⊆ QRP ∩ R = Q. (This also follows

from the proof of [3, Theorem 2.15].) The converse is covered by The-
orem 2.3.

(3) Let M be a maximal t-ideal. If M is also well-behaved, then
M ∈ P and M� = M by (1). Conversely, if M� = M , then M ⊆ P
for some P ∈ P by (2), and we must have M = P , that is, M is
well-behaved.

(4) This follows from [1, Theorem 1(1)]. �

Proposition 2.8. The set P of maximal well-behaved t-ideals coincides
with the set of maximal �-ideals.

Proof. Let I be a nonzero ideal of R, and consider the representation
I� =

⋂
P∈P IRP . If I� 6= R, then we must have I ⊆ P for some

P ∈ P . In particular, if Q is a maximal �-ideal, then Q ⊆ P for some
P ∈ P . However, P � = P (Lemma 2.7), whence Q = P , that is,
Q ∈ P . Conversely, suppose that L ∈ P . Then L = L�. If L ⊆ L1

with L1 = (L1)
� 6= R, then, by the argument above, L1 is contained in

a maximal well-behaved t-ideal L2, whence L = L1 = L2. Hence L is a
maximal �-ideal. �

Theorem 2.9. Let R be a domain. The following statements are equa-
vialent.

(1) Every maximal t-ideal of R is well-behaved.
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(2) � = w.
(3) � has finite type.
(4) � ≤ t.

Proof. (1) ⇒ (2). (1) yields P = t-Max(R). Hence for a nonzero ideal
I, we have I� =

⋂
M∈t-Max(R) IRM = Iw.

(2) ⇒ (3). Trivial.
(3) ⇒ (4). This follows from the fact that t is the largest finite-type

star operation.
(4) ⇒ (1). Let M be a maximal t-ideal of R . Assuming (4), we

have M� ⊆ M t = M , so that M� = M . Hence M is well-behaved by
Lemma 2.7(3). �

Following convention, we say that a domain R has finite �-character
if each nonzero element of R lies in only finitely many maximal �-ideals
(that is, in only finitely many maximal well-behaved ideals).

Theorem 2.10. A domain R has finite �-character if and only if it has
finite t-character. If R does have finite �-character, then the equivalent
conditions in Theorem 2.9 hold.

Proof. Assume that the domain R has finite �-character. Then � must
have finite type [1, Theorem 1(6)]. Hence the conditions of Theorem 2.9
hold. In particular, � = w, and since maximal w-ideals and maximal
t-ideals coincide, this yields that R has finite t-character. Conversely,
if R has finite t-character, then every maximal t-ideal is well-behaved
by [2, Theorem 1.1(2)]. It follows that maximal �-ideals and maximal
t-ideals coincide, and hence R has finite �-character. �

3. Polynomial rings

In Theorem 3.3 below, we give a condition that characterizes when
well-behavedness extends from a domain R to its polynomial ring R[x],
and we give an example showing that this condition may not hold.

Proposition 3.1. Let R be a domain with quotient field K. A nonzero
prime ideal P of R is a well-behaved t-prime if and only if P [x] is a
well-behaved t-prime of R[x].

Proof. Let P be a nonzero prime ideal of the domain R, and let I
be a finitely generated ideal of R. It is well-known, and easy to
verify, that P is a t-prime in R if and only if P [x] is a t-prime in
R[x] and that I−1R[x]P [x] = (IR[x]P [x])−1, where the inverse on the
right is taken with respect to R[x]P [x]. It is also easy to verify that
I−1R[x]P [x] ∩ K = I−1RP . Using these facts, it is not difficult to
prove the proposition. Suppose that P is a well-behaved t-prime of
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R, and let J be a finitely generated subideal of PR[x]P [x]. Then
J = AR[x]P [x] for a finitely generated ideal A of R[x] with A ⊆
P [x]. Let I = c(A) (the ideal generated by the coefficients of the
polynomials in A). Then IR[x] ⊆ P [x]. Since P is well-behaved,
(IRP )t ⊆ PRP , whence I−1RP = (IRP )−1 6= RP . Thus I−1 * R[x]P [x]

(since, from above, I−1R[x]P [x] ∩ K = I−1RP ). If follows easily that
for u ∈ I−1 \ RP , we also have u ∈ (IR[x]P [x])

−1 \ R[x]P [x]. In turn,
this yields J t ⊆ (IR[x]P [x])

t ⊆ PR[x]P [x]. Hence P [x] is well-behaved
in R[x]. For the converse, assume that P [x] is well-behaved, and let I
be a finitely generated subideal of P . Then (IR[x]P [x])

t ⊆ PR[x]P [x],
whence I−1R[x]P [x] 6= R[x]P [x]. It follows easily that I−1 * RP and
hence that I t ⊆ P . Thus P is well-behaved. �

Recall that a nonzero prime ideal Q of R[x] is an upper to zero if
Q ∩ R = (0), equivalently, if Q is contracted from a nonzero prime of
K[x]. If Q is an upper to zero, then R[x]Q is a valuation domain, and
hence Q is automatically a well-behaved t-prime.

Corollary 3.2. Let R be a domain. Then each maximal t-ideal of R[x]
is well-behaved if and only if each maximal t-ideal of R is well-behaved.

Proof. By [15, Proposition 1.1] maximal t-ideals of R[x] are either ex-
tended from maximal t-ideals of R or are uppers to zero. The conclusion
now follows easily from Proposition 3.1. �

Theorem 3.3. Let R be a domain. Then R[x] is well-behaved if and
only if R is well-behaved and each t-prime of R[x] is either extended
from a prime of R or is an upper to zero.

Proof. If R is well-behaved and the t-primes of R[x] are as described
in the statement of the theorem, then R[x] is well-behaved by Propo-
sition 3.1. Now, suppose that R[x] is well-behaved. It is clear from
Proposition 3.1 that R must also be well-behaved. Let Q be a t-prime
of R[x] such that, for P = Q ∩ R, we have P 6= (0) and Q 6= P [x].
Since QRP [x] is maximal ideal of RP [x] and is neither an upper to zero
nor extended from a prime of RP , it cannot be a t-ideal by [15, Propo-
sition 1.1]. Therefore, since RP [x] is a quotient ring of R[x], Q is not
well-behaved. �

The next result gives several large classes of domains in which well-
behavedness extends from R to R[x]. Recall that R is a UMt-domain
if uppers to zero in R[x] are maximal t-ideals. For f ∈ R[x] we denote
by c(f) the ideal generated by the coefficients of f .

Corollary 3.4. Let R be a well-behaved domain. Then the polynomial
ring R[x] is well-behaved in each of the following cases:
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(1) R is integrally closed.
(2) R is Noetherian.
(3) R is a UMt-domain.

Proof. Let Q be a prime ideal of R[x] with P = Q ∩ R 6= (0) and
Q 6= P [x]. By Theorem 3.3 it suffices to prove that Q is not a t-ideal.
To this end, choose a ∈ P , a 6= 0, and f ∈ Q \ P [x]. If k ∈ (a, f)−1,
then, since ak ∈ R[x], we must have k ∈ K[x] (where, as usual, K is
the quotient field of R).

In the integrally closed case, since fk ∈ R[x], we have c(f)c(k) ⊆
(c(f)c(k))v = c(fk)v ⊆ R [12, Proposition 34.8]. Thus c(f)k ⊆ R[x],
and we have c(f)(a, f)−1 ⊆ R[x], that is, c(f) ⊆ (a, f)v. Since f /∈
P [x], c(f) * Q, and hence Q is not a t-ideal.

In the Noetherian case replace the use of [12, Proposition 34.8] by the
content formula [12, Theorem 28.1] to get c(f)m+1c(k) = c(f)mc(fk) ⊆
R for some positive integer m. Although the exponent m depends on
k, the fact that (a, f)−1 is finitely generated yields a positive integer r
with c(f)r(a, f)−1 ⊆ R[x]. Thus c(f)r ⊆ (a, f)v but c(f)r * Q.

In the UMT case, ignore the element a; instead apply [9, Theorem
A] to produce an upper to zero U with f ∈ U ⊆ Q. Then, since U is a
maximal t-ideal, Q cannot be a t-ideal. �

We end this section with the promised example of a well-behaved
domain R for which the polynomial ring R[x] is not well-behaved.

Example 3.5. Let k be a field, and set D = k[y, {yz2n}∞n=0] and S =
k[y, z], where y, z are indeterminates. Then M = (y, {yz2n}) is a max-
imal ideal of D. Finally, put T = k(y, z)[[w]] (w an indeterminate),
N = wT , and R = D + N . We shall show that R is well-behaved, but
the polynomial ring R[x] is not. We begin by discussing some facts
about D.

Claim 1. The ideal M is the only prime ideal of D containing y.

Proof. Let P be a prime of D, and suppose that y ∈ P . Then for each
n, we have (yz2

n
)2 = y · yz2n+1 ∈ P . Thus each generator of M lies in

P ; therefore, since M is maximal, we have P = M .

Claim 2. For each prime P of D with P 6= M , there is a unique prime
Q of S with Q ∩D = P , and for this Q we have DP = SQ.

Proof. Let s ∈ S. For sufficiently large i, yis ∈ D. Then s = yis/yi ∈
DP since yi /∈ P (Claim 1). Hence S ⊆ DP . Then for Q = PDP ∩S, we
have Q∩D = P . It is clear that for any prime L of S with L∩D = P ,
we must have SL = DP , and the claim follows.
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Claim 3. Each maximal ideal of D has height 2.

Proof. Note that M = yS∩D = (y, z)S∩D ) zS∩D. The conclusion
(for M as well as the other maximal ideals of D) now follows from
Claim 2 (and well-known facts about Spec k[y, z]).

Claim 4. The only maximal ideal of D that is also a t-ideal is M .
Moreover, M is well-behaved.

Proof. Fix a maximal ideal P 6= M , and let Q denote the maximal
ideal of S that contracts to P . Then Q is not a t-ideal of S, whence
QvS = S (where vS is the v-operation on S). Choose i sufficiently
large that yiA ⊆ P , where A is a finite generating set for Q, and
choose b ∈ P \M . Then (yiA, b)DM = DM , whence, using the fact
that (yiA, b) is a finitely generated ideal of D, we have (yiA, b)−1DM =
(DM : (yiA, b)DM) = DM . For a maximal ideal L 6= M,P , denote
the unique prime of S contracting to L by L′. Then, since y /∈ L,
(yiA, b)DL = (yiA, b)SL′ = QSL′ = SL′ = DL, from which it follows
that (yiA, b)−1DL = DL. As for the maximal ideal P itself, using the
fact that y /∈ P , we have

(yiA, b)−1DP ⊆ (DP : ADP ) = (SQ : QSQ) = (S : Q)SQ = SQ = DP ,

whence (yiA, b)−1DP = DP . It follows that (yiA, b)−1 = D, so that

P is not a t-ideal. Finally, since (yz2
n
)2z = yz2

n+1 · yz ∈ D, we have
M = rad(D :D z), whence M is a well-behaved t-ideal (Lemma 2.2).

Claim 5. D is well-behaved.

Proof. The maximal ideal M is well-behaved by Claim 4. The other
height-two primes are not t-ideals, and the height-one primes are au-
tomatically well-behaved t-primes.

It is now relatively easy to see that R is well-behaved. According
to [10, Proposition 1.8], M + N and Q + N , where Q is a height-one
prime of D, are t-primes of R, while P + N , where P is a height-two
non-t-prime of D, is not a t-prime of R. Since RM+N = DM + N and
RQ+N = RQ +N for each Q, we may again invoke [10, Proposition 1.8]
to see that M +N and each Q+N localize to t-primes. The only other
t-prime of R is N itself, and NRN = NT = N is a (principal prime
and hence a) t-prime of T . Therefore, R is well-behaved. Next, if we
denote the quotient field of D by K and put U = (x− z)K[x] ∩D[x],
then by [14, Example 2.5] U + N [x] is a t-prime of R[x] that contracts
to N in R (but is not equal to N [x]). By Theorem 3.3, R[x] is not
well-behaved. �
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4. Almost Krull domains

Our primary goal in this section is to study the PvMD condition and
divisoriality in the class of almost Krull domains introduced by Pirtle
[19]. It is convenient to begin with a characterization of Krull domains.

Theorem 4.1. The following statements are equivalent for a domain
R.

(1) Each nonzero ideal of R is t-invertible.
(2) Each associated prime of a principal ideal of R is t-invertible.
(3) Each minimal prime of a principal ideal of R is t-invertible.
(4) R is a Krull domain.

Proof. The implications (1)⇒ (2)⇒ (3) are clear. (3)⇒ (4) is part of
[17, Theorem 3.6], and (4)⇒ (1) is due to Jaffard [16]. (The equivalence
of (2) and (4) first appeared in [18]). �

In Theorem 4.1 one cannot weaken (3) to “each height-one prime of
R is t-invertible.” (For example, if V is a valuation domain with no
height-one prime, then V satisfies this condition vacuously.) However,
if R has t-dimension one (all t-primes have height one), or R is an
almost Krull domain, then this weaker condition suffices, as we now
show.

Theorem 4.2. The following statements are equivalent for a domain
R.

(1) R has t-dimension one, and each height-one prime of R is t-
invertible.

(2) R is an almost Krull domain, and each height-one prime of R
is t-invertible.

(3) R is a Krull domain.

Proof. It is clear that condition (3) implies (1) and (2). Let P be a
prime of R that is minimal over a principal ideal. In particular, P
is a t-ideal. If R has t-dimension one, then P must have height one.
On the other hand, if R is almost Krull, then PRP is minimal over
a principal ideal in the Krull domain RP , and, again, P must have
height one. Thus, assuming either (1) or (2), we have that minimal
primes of principal ideals are t-invertible, whence R is a Krull domain
by Theorem 4.1 �

Our next result is a characterization of almost Krull domains corre-
sponding to Theorem 4.1.

Theorem 4.3. The following statements are equivalent for a domain
R.
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(1) Each nonzero ideal of R is locally t-invertible.
(2) Each associated prime of a principal ideal of R is locally t-

invertible.
(3) Each minimal prime of a principal ideal of R is locally t-invertible.
(4) R is an almost Krull domain.

Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) are trivial. Now
let M be a maximal ideal of R, and let Q be a minimal prime of a
principal ideal of RM . Then Q = PRM , where P is a minimal prime
of a principal ideal in R. Assuming statement (3) then forces Q to
be t-invertible. By Theorem 4.1, this yields that RM is Krull, and
the implication (3) ⇒ (4) follows. Finally, the implication (4) ⇒ (1)
follows from an even easier localization argument. �

We now turn to the PvMD condition. It turns out that, for most
of this study, we can relax “almost Krull” to “locally PvMD.” It is
not difficult to give examples of almost PvMDs that are neither almost
Krull nor PvMDs. For example, let D be an almost Krull domain
with quotient field K such that D is not a PvMD, e.g., [13], let x be
an indeterminate, and set R = D + xK[x]. Since D is not a PvMD,
neither is R [6, Theorem 4.43]. Moreover, since R shares an ideal with
K[x], it is not completely integrally closed and is therefore not almost
Krull. To see that R is locally a PvMD, let N be a maximal ideal of
R; then, by [6, Theorem 4.21], N = fR for some irreducible f ∈ K[x]
with f(0) = 1 or N = M + xK[x] for some maximal ideal M of R. In
the first case, RN is a quotient ring of K[x] and is therefore a PvMD
(in fact, R[x]N is the valuation domain K[x]fK[x]). In the second case,
we have RN ⊇ DM , whence RN is a quotient ring of DM + xK[x].
Since DM is a Krull domain and hence a PvMD, DM + xK[x] is also a
PvMD, again by [6, Theorem 4.21]. Therefore, RN is a PvMD.

Recall the following well-known characterization of PvMDs: a do-
main R is a PvMD if and only if RP is a valuation domain for each
t-prime P of R if and only if each nonzero finitely generated ideal of R
is t-invertible. The next result is a first step towards a similar charac-
terization for domains whose localizations are PvMDs.

Proposition 4.4. The following conditions are equivalent for a domain
R.

(1) RP is a valuation domain for each well-behaved t-ideal P of R.
(2) RP is a valuation domain for each P ∈ P.
(3) Each nonzero finitely generated ideal I of R is �-invertible.

Moreover, if these conditions hold, then � ≥ t.
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Proof. The implication (1) ⇒ (2) is trivial. Let P be a well-behaved
t-prime and I a nonzero finitely generated ideal. We have II−1RP =
(IRP )(RP : IRP ). We use this equality to prove that (2) ⇒ (3) ⇒
(1). Assuming (2), the equality yields II−1 * P . Hence (II−1)� =⋂
Q∈P II

−1RQ = R, that is, (3) holds. Assuming (3), we have R =

(II−1)� * P . Hence II−1 * P , and the same equality ensures that
IRP is (invertible and hence) principal in RP . It follows that RP is a
valuation domain, and we have (1).

Finally, suppose that (2) holds, and let I be a nonzero ideal of R and
P a well-behaved t-prime. Then RP is a valuation domain, whence
I tRP ⊆ (IRP )tRP = IRP . We then have I t ⊆

⋂
Q∈P IRQ = I�, as

desired.
�

We now add a condition needed to characterize domains that are
locally PvMDs. The condition loosely states that if P is “partially”
well-behaved, then it is well-behaved.

Lemma 4.5. Let R be locally a PvMD. Then R satisfies the conditions
of Proposition 4.4 as well as the following condition: if P ⊆ M are
primes in R with M maximal and PRM a t-prime in RM , then P is a
well-behaved t-prime of R.

Proof. Suppose that R is locally a PvMD. Then for P ∈ P , RP is a
PvMD whose maximal ideal PRP is a t-ideal, whence, in fact, RP is a
valuation domain.

With P ⊆M as stated, we have RP = (RM)PRM
. Since R is locally

a PvMD, this yields that RP is a valuation domain, whence PRP is
automatically a t-ideal in RP . Therefore, P is a well-behaved t-prime
of R. �

Theorem 4.6. The following statements are equivalent for a domain
R.

(1) R is locally a PvMD.
(2) Each nonzero finitely generated ideal of R is locally t-invertible.
(3) Each nonzero two-generated ideal of R is locally t-invertible.
(4) (a) ∩ (b) is locally t-invertible for all nonzero a, b ∈ R.
(5) If P ⊆M are primes in R with M maximal and PRM a t-ideal

in RM , then RP is a valuation domain.

Proof. The equivalence (1) ⇔ (2) follows from the well-known charac-
terization of PvMDs as domains each of whose nonzero finitely gen-
erated ideals is t-invertible, and the equivalence of (1), (3), and (4)
follows from [18, Lemma 1.7 and Corollary 1.8]. The implication (1)
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⇒ (5) is taken care of by Lemma 4.5. For the converse, let M be a
maximal ideal of R and P a prime ideal contained in M such that
PRM is a t-prime in RM . Then (5) implies that (RM)PRM

= RP is a
valuation domain. Therefore, RM is a PvMD. �

We now determine when a domain that is locally a PvMD is in fact
a PvMD.

Theorem 4.7. Let R be locally a PvMD. Then:
The following statements are equivalent.

(1) R is a PvMD.
(2) R is well-behaved.
(3) Each maximal t-ideal of R is well-behaved.
(4) � = w.
(5) � = t.

Proof. (1) ⇒ (2). If R is a PvMD and P is a t-prime of R, then PRP

is automatically a t-prime in the valuation domain RP .
(2) ⇒ (3). Trivial.
(3) ⇒ (4). Apply Theorem 2.9.
(4) ⇒ (5). This follows from Proposition 4.4 and the fact that we

always have w ≤ t.
(5) ⇒ (1) Assume that � = t, and let M be a maximal t-ideal of R.

Then M = M t = M�, whence M is well-behaved by Lemma 2.7(3).
Thus MRM is a t-prime in the PvMD RM , whence RM is a valuation
domain. Therefore, R is a PvMD. �

In [8] S. El Baghdadi, L. Izelgue, and A. Tamoussitt define a star
operation ∗ on a domain R by I∗ =

⋂
M∈Max(R)(IRM)tRM for I ∈ F(R).

Although this star operation is quite different from � (for example,
∗ ≥ t in general but this is not true for �), they coincide for almost
Krull domains. Thus our next result, which specializes Theorem 4.7
to almost Krull domains, is essentially a restatement of (part of) [8,
Proposition 1.7].

Corollary 4.8. Let R be an almost Krull domain. Then:

(1) A prime t-ideal P of R is well-behaved if and only if ht(P ) = 1.
(2) I� =

⋂
htP=1 IRP for each nonzero ideal I of R.

(3) � ≥ t with equality holding if and only if R is a PvMD.

Proof. (1) If P is a well-behaved t-prime in R, then PRP is a t-prime
in the Krull domain RP , and hence htP = 1. The converse is trivial.

(2) This follows from (1).
(3) This follows from Proposition 4.4 and Theorem 4.7. �



14 EVAN HOUSTON AND MUHAMMAD ZAFRULLAH

Following Gilmer [11], it is natural to call a maximal �-ideal Q �-
sharp if RQ does not contain

⋂
RP , where the intersection is taken

over all maximal �-ideals distinct from Q. We then say that R itself
is �-sharp if each maximal �-ideal of R is �-sharp. In an almost Krull
domain, this restricts to the height-one primes. We have:

Theorem 4.9. The following statements are equivalent for a height-
one prime Q in an almost Krull domain R.

(1) Q is divisorial.
(2) Q−1 6= R.
(3) Q = (R :R u) for some u ∈ Q−1 \R.
(4) Each Q-primary ideal of R is divisorial.
(5) Q is �-sharp.
(6) Q contains a divisorial ideal contained in no other height-one

prime.
(7) QQ−1 * Q.
(8) Q is �-invertible.

Proof. (1) ⇒ (2), (4) ⇒ (1). Trivial.
(2) ⇒ (3). Let u ∈ Q−1 \ R. Then Q ⊆ (R :R u). Let P be a prime

minimal over (R :R u). Then P is well-behaved, whence htP = 1 by
Corollary 4.8. This forces P = Q, and we have Q = (R :R u).

(3)⇒ (4). Write Q = (R :R u) = (1, u)−1. According to [4, Theorem
1.6], (1, uk)−1 = (((1, u)−1)k)� for each positive integer k. (It suffices,
and is not difficult, to verify this locally at each height-one prime.) We
then have

(1, uk)−1 = (Qk)� =
⋂

htP=1

QkRP = QkRQ ∩R.

Since (1, uk)−1 is divisorial, we have that the symbolic powers of Q
are divisorial. However, if I is Q-primary, then, since RQ is a DVR,
IRQ = QkRQ for some k, whence I = QkRQ ∩R, which is divisorial.

(3) ⇒ (5). If Q = (R :R u), it is clear that u /∈ RQ. Let P be
a height-one prime different from Q. Then, since uQ ⊆ R, we have
uRP = uQRP ⊆ RP , and hence u ∈ RP . Therefore, Q is �-sharp.

(5) ⇒ (6). Let u ∈
⋂

htP=1,P 6=QRP \ RQ. Then the divisorial ideal

(R :R u) works.
(6) ⇒ (2). Let I be a divisorial ideal contained in Q but contained

in no other height-one prime, and choose w ∈ I−1 \R. We have IRQ =
QkRQ for some positive integer k. Then wQk ⊆ wQkRQ = wIRQ ⊆
RQ. For P a height-one prime not equal to Q, (R :R w) * P (since
I * P ). Then w ∈ RP , and hence wQk ⊆ RP . It follows that wQk ⊆ R
(Theorem 2.3). We may as well assume that k is minimal with this
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property, so that wQk−1 * R. Pick u ∈ wQk−1 \R. Then u ∈ Q−1 \R,
as desired.

(2) ⇒ (7). Proceeding contrapositively, suppose that QQ−1 ⊆ Q.
Since R is completely integrally closed, this implies that Q−1 = R.

(7) ⇒ (8). Suppose QQ−1 * Q. Since it is clear that QQ−1 * P for
P a height-one prime different from Q, we must have (QQ−1)� = R.

(8) ⇒ (2). This is clear. �

Globalizing the preceding theorem, we obtain the following charac-
terization of divisoriality in almost Krull domains. However, we note
that the equivalence of (1) and (4) follows directly from [8, Theorem
1.9].

Corollary 4.10. The following statements are equivalent for an almost
Krull domain R.

(1) The height-one primes of R are divisorial.
(2) R is �-sharp.
(3) Each nonzero ideal of R is �-invertible.
(4) � = v.

Proof. The equivalence of statements (1) and (2) follows from Theo-
rem 4.9. Assume (1). If I is a nonzero ideal, then I� =

⋂
htP=1 IRP =⋂

htP=1(IRP ∩R). For each P , IRP ∩R is either P -primary, in which
case it is divisorial by Theorem 4.9, or is equal to R. Thus, as an in-
tersection of divisorial ideals, I� is divisorial, whence Iv ⊆ (I�)v = I�.
Hence (1)⇒ (4). Since R is completely integrally closed, each nonzero
ideal is v-invertible, and the implication (4) ⇒ (3) follows. Assume
(3), and let Q be a height-one prime. By assumption Q is �-invertible,
whence Q−1 6= R (lest Q = Q� = (QQ−1)� = R). By Theorem 4.9, Q
is divisorial, and we have (3) ⇒ (1). �
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