INTEGRAL DOMAINS IN WHICH ANY TWO *v*-COPRIME ELEMENTS ARE COMAXIMAL

EVAN HOUSTON AND MUHAMMAD ZAFRULLAH

ABSTRACT. Domains in which the star operations d (the trivial star operation) and w coincide have received a good deal of attention recently. These are exactly the domains D in which I = D whenever I is a finitely generated ideal of D with $I^v = D$. In this work, we study what happens when "finitely generated" is replaced by "two-generated." It turns out that these are precisely the domains in which d = F, where F is a certain star operation closely connected to, but more complicated than, the w-operation.

INTRODUCTION

Throughout this work, D denotes a domain, and K denotes its quotient field. We recall the *v*-operation: For a nonzero fractional ideal I of D, we set $I^{-1} = (D : I) = \{u \in K \mid uI \subseteq D\}$ and then $I^v = (I^{-1})^{-1}$. (The map $I \mapsto I^v$ is an example of a star operation; we review pertinent definitions below as needed.) We say that nonzero elements $a, b \in D$ are *v*-coprime if $(a, b)^v = D$ and comaximal if (a, b) = D. It is easy to see that a and b are *v*-coprime if and only if $(a, b)^{-1} = D$ if and only if $(a) \cap (b) = (ab)$. The primary purpose of this work is to study DF-domains, domains D in which $a, b \in D$ are comaximal whenever a, b are *v*-coprime elements. She called an ideal I of D an F-ideal if whenever $a, b, x \in D$ with $(a, b)^v = D$ and $x(a, b) \subseteq I$ we have $x \in I$. As is pointed out in [16], an F-ideal is precisely an ideal I satisfying $I^F = I$ for a certain star operation F on D, and we shall show that DF-domains are precisely those domains for which the d-operation (the identity star operation) is identical to the F-operation.

Examples of DF-domains include Prüfer domains and one-dimensional domains. If fact, these are examples of DW-domains, that is, domains in which the two star operations d and w (reviewed below) coincide. DW-domains were introduced (but not named) in [7] and further studied in [8] (where they were called *t*-linkative domains), [26], [28], and [29]. It is easy to see that D is a DW-domain if and only if I is principal for each finitely generated ideal I of D such that I^v is principal (see [28, Proposition 2.1]). Hence DW-domains are DF-domains, but we shall show (Proposition 5.2) that DF-domains form a properly larger class.

Recall that GCD-domains may be characterized as those domains D in which $(a, b)^v$ is principal for all nonzero $a, b \in D$. Now, it is well known that if $(a, b)^v = (d)$ for a given pair of elements a, b in a domain D, then gcd(a, b) exists and is equal to d, but the converse is false. Thus domains D in which (a, b) is principal whenever

²⁰¹⁰ Mathematics Subject Classification: 13A15, 13F20.

Key words and phrases: star operation, w-operation.

a, b are elements of D such that gcd(a, b) exists might be expected to form a strictly smaller class that the class of DF-domains. This is indeed the case. In fact the property just mentioned is easily seen to be equivalent to (a, b) = D whenever a, b are elements of D for which gcd(a, b) = 1, and domains with this property were called *pre-Bézout* domains by Cohn [6]. Interestingly, the "finitely generated version" of this property has recently been studied by Park and Tartarone: they call a domain D GCD-Bézout if $(a_1, \ldots, a_n) = (d)$ whenever $a_1, \ldots, a_n \in D$ and $gcd(a_1, \ldots, a_n) = d$.

In Section 1 we review terminology of star operations and study two particular star operations, the F- and t_2 -operations, both defined in [16]. In Section 2 we give several characterizations of DF-domains, study their properties, compare and contrast the class of DF-domains with the other classes mentioned above, and explore what happens when we combine the DF-property with other well-studied properties (such as GCD, Krull). Section 3 is devoted to studying localization. We prove that a domain D for which D_M is a DF-domain for each maximal ideal M of D is a DF-domain, but we also give an example of a DF- (in fact, a DW-) domain D with a maximal ideal M such that D_M is not DF, thus answering a question left open in [28]. We also consider other properties locally, proving, for example, that a domain D is a Prüfer domain if and only if it is a DF-domain that is locally a GCD-domain and is such that F-primes localize (to F-primes). We devote a brief Section 4 to connections with regular sequences. Our main result here is a generalization of the fact that in a Noetherian domain D, an ideal I has (classical) grade at least 2 if and only if $I^{-1} = D$ [25, Exercise 2, page 102]. In Section 5 we analyze an example of Uda [30] to show that the DF-property is weaker than the DW-property. We also study the behavior of the DF-property in pullbacks, yielding many more examples of DF-domains (that are not DW-domains). Finally, in Section 6, we consider polynomial and Nagata rings. We show, for example, that D[X] is a DF-domain if and only if D is a field.

1. The F- and t_2 -operations

We begin by recalling some basic facts about star operations. Denote by $\mathbf{F}(\mathbf{D})$ (resp., $\mathbf{f}(\mathbf{D})$) the set of nonzero fractional (resp., nonzero finitely generated fractional) ideals of D. A star operation on D is then a mapping $I \mapsto I^*$ of $\mathbf{F}(D)$ into $\mathbf{F}(D)$ such that for all nonzero $a \in K$ and $I, J \in \mathbf{F}(D)$,

- (1) $(aD)^* = aD$ and $aI^* = (aI)^*$;
- (2) $I \subseteq I^*$, and $I \subseteq J$ implies $I^* \subseteq J^*$; and
- (3) $(I^*)^* = I^*$.

For any star operation * on D, two new star operations $*_f$ and $*_w$ can be constructed by setting, for $I \in \mathbf{F}(D)$, $I^{*_f} = \bigcup \{J^* \mid J \subseteq I \text{ and } J \in \mathbf{f}(D)\}$ and $I^{*_w} = \{x \in K \mid xJ \subseteq I \text{ for some } J \in \mathbf{f}(D) \text{ with } J^* = D\}$. A star operation *on D is said to be of *finite type* if $* = *_f$; hence $*_f$ and $*_w$ are of finite type. An ideal $I \in \mathbf{F}(D)$ is said to be a *-*ideal* if $I^* = I$, and a *-*ideal* is called a *maximal* *-*ideal* if it is maximal among proper integral *-*ideals*. We denote by *-Max(D)the set of maximal *-*ideal* of D. Assuming D is not a field, it is known that each maximal *-*ideal* is prime, that $*_f$ -maximal ideals are plentiful in the sense that each nonzero $*_f$ -*ideal* (and hence each nonzero element) of D is contained in a maximal $*_f$ -ideal, that a prime ideal minimal over a $*_f$ -*ideal* is itself a $*_f$ -*ideal*, and that $*_f$ -Max $(D) = *_w$ -Max(D) [5, Theorem 2.16]. Also, if $I \in \mathbf{F}(D)$, then $I^{*_w} = \bigcap_{P \in *_f \text{-Max}(D)} ID_P$ [5, Corollary 2.10], and hence $I^{*_w}D_P = ID_P$ for each $P \in *_f \text{-Max}(D)$. The best-known star operations are the d-, v- (defined above), t-, and w-operations. The d-operation is just the identity function on $\mathbf{F}(D)$, so that $d = d_f = d_w$. The t-operation (resp., w-operation) is given by $t = v_f$ (resp., $w = v_w$). For two star operations $*_1$ and $*_2$ on D, we write $*_1 \leq *_2$ when $I^{*_1} \subseteq I^{*_2}$ for all $I \in \mathbf{F}(D)$ (and $*_1 < *_2$ when $*_1 \leq *_2$ but $*_1 \neq *_2$). It is known that $d \leq *_w \leq *_f \leq * \leq v$, $*_w \leq w$, and $*_f \leq t$ for any star operation * on D.

We next recall the definitions of the t_2 - and F-operations.

Definition 1.1. Let $J \subseteq K$ and $I \in \mathbf{F}(\mathbf{D})$.

- (1) For the t_2 -operation: Set $J' = \bigcup \{(a, b)^v \mid a, b \in J\}$. Then set $I_0 = I$, $I_n = (I_{n-1})'$ for n > 0, and $I^{t_2} = \bigcup_{k=0}^{\infty} I_k$. The t_2 -operation was shown in [16] to be a finite-type star operation.
- (2) For the *F*-operation: Set $J' = \{x \in K \mid x(a,b) \subseteq J \text{ for some } a, b \in J \text{ with } (a,b)^v = D\}$. Then let $I_0 = I$, $I_n = (I_{n-1})'$ for n > 0, and $I^F = \bigcup_{k=0}^{\infty} I_k$. It was observed in [16] that this defines a finite-type star operation on D (but most of the necessary details were already present in [3]).

Observe that the t_2 - and F-operations are similar to the t- and w-operations, the differences being that finite subsets are replaced by two-element subsets and iteration is required. Clearly, we have $F \leq t_2$, $F \leq w$, and $t_2 \leq t$. In [16], an example was given showing that it is possible to have $F < t_2$; in fact, in that example, it is easy to see that we have $d = F = w < t_2$. In Example 5.1 below, we show that it is possible to have F < w and $t_2 < t$, answering questions posed in [16].

Although the t_2 - and F-operations are defined inductively, only one step is needed to determine whether a given ideal is a t_2 - or F-ideal:

Lemma 1.2. Let I be a nonzero ideal of a domain D. Then the following statements hold.

- (1) I is a t_2 -ideal if $(a, b)^v \subseteq I$ whenever $a, b \in I$.
- (2) I is an F-ideal if $x \in I$ whenever $x(a,b) \subseteq I$ with $x, a, b \in D$ and $(a,b)^v = D$.
- (3) I is a prime F-ideal (F-prime) if I does not contain any pair of v-coprime elements.

Proof. Statements (1) and (2) follow easily from the definitions. For (3), suppose that I is as hypothesized and that $x(a,b) \subseteq I$ with $(a,b)^v = D$. Then, $(a,b) \notin I$, so that we must have $x \in I$. Hence I is an F-ideal by (2).

As has already been mentioned, for any star operation * on D, we may define $*_w$ by $I^{*_w} = \bigcup \{ (I : J) \mid J \text{ is a finitely generated subideal of } I \text{ and } J^* = D \}$, and we have $v_w = t_w = w$.

Proposition 1.3. For any domain D, the F- and F_w -operations on D are identical.

Proof. Since $F_w \leq F$ by definition, it suffices to show that each F_w -ideal is also an F-ideal. Accordingly, let I be an F_w -ideal of D, and suppose that $x, a, b \in D$ are such that $(a, b)^v = D$ and $x(a, b) \subseteq I$. Since $1(a, b) \subseteq (a, b)$ and $(a, b)^v = D$, we have $(a, b)^F = D$ and hence $x \in I^{F_w} = I$. The result now follows from Lemma 1.2. \Box

For any *-operation on D, it is known that if P is a $*_w$ -prime of D, then every prime ideal contained in P is also a $*_w$ -prime. Hence we have the following:

Corollary 1.4. If P is an F-prime of D, then so is every nonzero prime of D contained in P. \Box

Questions 1.5. Let D be a domain.

- (1) Must we have F-Max $(D) \subseteq t_2$ -Max(D)?
- (2) Must we have F-Max $(D) = t_2$ -Max(D)?
- (3) If I is an ideal of D with $I^{t_2} = D$, do we necessarily have $I^F = D$?
- (4) Do we have t_2 -Max $(D) \subseteq F$ -Max(D)?
- (5) What conditions on D ensure $t_2 = t$?
- (6) In general, we have $F = F_w \leq (t_2)_w \leq w$. When do we have $F = (t_2)_w$ or $(t_2)_w = w$?

It is not difficult to show that Questions (1)-(3) are equivalent:

Lemma 1.6. Suppose that $*_1 \leq *_2$ are finite-type star operations on D. Then the following statements are equivalent.

- (1) $*_1$ -Max(D) $\subseteq *_2$ -Max(D).
- (2) $*_1$ -Max(D) = $*_2$ -Max(D).
- (3) If I is an ideal of D with $I^{*_2} = D$, then $I^{*_1} = D$.

Proof. Assume (1), and let $M \in *_2$ -Max(D). Since $*_1 \leq *_2$, we have $M^{*_1} \neq D$. Hence M is contained in a maximal $*_1$ -ideal N of D. However, by assumption, this yields $N \in *_2$ -Max(D), and we must therefore have M = N, that is, $M \in *_1$ -Max(D). Thus (1) \Rightarrow (2). Assume (2), and let I satisfy $I^{*_1} \neq D$. Then $I \subseteq M$ for some $M \in *_1$ -Max $(D) = *_2$ -Max(D), and we have $I^{*_2} \subseteq M \subsetneq D$. Hence (2) \Rightarrow (3). Finally, assume (3), and let $M \in *_1$ -Max(D). Then $M^{*_1} \neq D$, whence, by assumption, $M^{*_2} \neq D$. Since M^{*_2} is a $*_1$ -ideal and $M \subseteq M^{*_2}$, this yields $M = M^{*_2}$. Thus M is a $*_2$ -ideal. Since every $*_2$ -ideal is also a $*_1$ -ideal, M cannot be contained in a larger $*_2$ -ideal, i.e., $M \in *_2$ -Max(D).

Recall that if * is a star operation on D, then we say that D has *finite* *-character if each nonzero element of D is contained in only finitely many maximal *-ideals of D. (When * = d, one says that D has finite character.)

Proposition 1.7. If D has finite t_2 -character, then t_2 -Max(D) = F-Max(D).

Proof. Suppose that D has finite t_2 -character, and let $M \in F$ -Max(D). If M is not a t_2 -ideal, then, since every t_2 -ideal is a F-ideal, we have $M^{t_2} = D$. Choose a nonzero element $a \in M$. Then a is in only finitely many maximal t_2 -ideals, and, since $M^{t_2} = D$, we may use prime avoidance to find $b \in M$ with (a, b) in no maximal t_2 -ideal, that is, $(a, b)^{t_2} = D$. However, this yields $(a, b)^v = D$, contradicting that M is a maximal F-ideal. Thus M must be a t_2 -ideal and hence a maximal t_2 -ideal. The result now follows from Lemma 1.6.

Proposition 1.8. If D has finite t-character, then t-Max $(D) = t_2$ -Max(D) = F-Max(D) = w-Max(D). In particular, finite t-character implies both finite t_2 -and finite F-character.

Proof. Assume that D has finite t-character, and let M be a maximal t_2 -ideal of D. If M is not a t-ideal, then $M^t = D$, and, as in the proof of Proposition 1.7, we

can find $a, b \in M$ with (a, b) in no maximal t-ideal of D. But then $(a, b)^v = D$, a contradiction. Hence t-Max $(D) = t_2$ -Max(D), and D also has finite t_2 -character. A similar conclusion for maximal F-ideals now follows from Proposition 1.7. Finally, it is well know that t-Max(D) = w-Max(D) in general ([5, Theorem 2.16]).

It follows from Proposition 1.7 that finite t_2 -character implies finite *F*-character. However, it does not imply finite *t*-character–see Proposition 5.2 below.

In [22] the authors introduced the class of TV-domains, domains in which the t-operation coincides with the v-operation. By [22, Theorem 1.3], TV-domains have finite t-character, so that Proposition 1.8 applies to this class of domains. Now recall that a domain is a *Mori domain* if it satisfies the ascending chain condition on divisorial ideals. It was observed in [22] that the class of TV-domains includes (but is properly larger than) the class of Mori domains. In particular, Proposition 1.8 applies to Noetherian domains. Actually, for Mori domains, we can say a good deal more:

Proposition 1.9. Let D be a Mori domain. Then every t_2 -prime of D is a t-prime.

Proof. Let P be a t_2 -prime of D, and let a be a nonzero element of P. By [19, Theorem 2.1], a is contained in only finitely many t-primes of D. Use prime avoidance to choose $b \in P$ with b in no t-prime Q of D for which $a \in Q$ and $Q \subsetneq P$. Since P is a t_2 -prime, $(a, b)^v \subseteq P$. Shrink P to a prime P_0 minimal over $(a, b)^v$. Then P_0 is a t-prime, and by construction we must have $P = P_0$.

We suspect that Questions (1) - (4) above have negative answers in general. With respect to Question 5, we do not even know whether $t_2 = t$ in a one-dimensional local Noetherian domain. (We do know from Proposition 5.2 below that $t_2 < t$ can occur (albeit in a domain that is far from being Noetherian).)

2. DF-domains

We begin this section with several characterizations of DF-domains. We recall the definition: The domain D is a DF-domain if for $a, b \in D$ with $(a, b)^v = D$, we have (a, b) = D. Now recall from [7] that an overring E of a domain D is *t*-linked over D if (E : IE) = E whenever I is a finitely generated ideal of D with $I^{-1} = D$, equivalently, if $(JE)^{t_E} = E$ whenever J is an ideal of D with $J^t = D$. It was shown that every overring of D is *t*-linked over D if and only if every maximal ideal of Dis a *t*-ideal, i.e., if and only if D is a DW-domain. In [9] the notion of *t*-linkedness was extended as follows. Given D and an overring E and star operations * on Dand $*_1$ on E, E is $(*, *_1)$ -linked over D if $(JE)^{*_1} = E$ whenever J is an ideal of Dwith $J^* = D$.

Theorem 2.1. The following statements are equivalent for a domain D.

- (1) D is a DF-domain.
- (2) $a, b \in D$ with $(a, b)^v = (d)$ implies (a, b) = (d).
- (3) $a, b \in D$ with $(a, b)^v$ principal implies (a, b) principal.
- (4) Each nonzero ideal of D is an F-ideal; equivalently, the d- and F-operations on D are identical.
- (5) Each maximal ideal of D is an F-prime.
- (6) For every overring E of D, E is (F, F_E) -linked over D.

Proof. (1) \Rightarrow (2): Let *D* be a DF-domain, and let $a, b \in D$ with $(a, b)^v = dD$ for some $d \in D$. Then $(a/d, b/d)^v = (1/d)(a, b)^v = D$. Since *D* is a DF-domain, this yields (a/d, b/d) = D and, therefore, (a, b) = dD.

 $(2) \Rightarrow (3)$: Trivial.

 $(3) \Rightarrow (4)$: Assume (3). Let *I* be a nonzero ideal of *D*, and suppose that $x(a, b) \subseteq I$ with $(a, b)^v = D$. By (3) (a, b) = (c) for some $c \in D$. Hence $D = (a, b)^v = (c) = (a, b)$, and we have $x \in I$. Therefore, $I^F = I$.

 $(4) \Rightarrow (5)$: Trivial.

 $(5) \Rightarrow (6)$: Assume (5), let *E* be an overring of *D*, and let *I* be an ideal of *D* with $I^F = D$. If $(IE)^{F_E} \neq E$, then *IE* is contained in a maximal *F*-ideal *Q* of *E*. Let *M* be a maximal ideal of *D* containing $Q \cap D$. Then *M* is an *F*-prime. However, $I^F = D$ and $I \subseteq M$, a contradiction.

 $(6) \Rightarrow (1)$: Assume (6), and let $a, b \in D$ with $(a, b)^v = D$. Then $(a, b)^F = D$ also. Suppose, by way of contradiction, that (a, b) is a proper ideal of D, and let M be a maximal ideal containing (a, b). Then there is a valuation overring V of D whose maximal ideal N satisfies $N \cap D = M$. By assumption, we have $((a, b)V)^{F_V} = V$. However, every ideal of V is a *t*-ideal and hence also an F_V -ideal, and this yields $((a,b)V)^{F_V} = (a,b)V \subseteq N$, a contradiction. \Box

Since $F \leq w$ for all domains, the following is immediate.

Corollary 2.2. A DW-domain is a DF-domain.

We consider another property stronger than DF. Recall that in [6] Cohn defined a *pre-Bézout* domain to be a domain D satisfying the following property: $a, b \in D$ with gcd(a, b) = 1 implies (a, b) = D. We list a few equivalent conditions:

Lemma 2.3. The following statements are equivalent for a domain D.

- (1) $a, b \in D$ with gcd(a, b) = d implies (a, b) principal.
- (2) $a, b \in D$ with gcd(a, b) = d implies (a, b) = (d).
- (3) D is a pre-Bézout domain.
- (4) Each proper 2-generated ideal of D is contained in a proper principal ideal.

Proof. Assume (1), and let $a, b \in D$ with gcd(a, b) = d. Then (a, b) is principal, say (a, b) = (c). Since $c \mid a$ and $c \mid b$, we have $(d) \subseteq (c)$. On the other hand, $(c) = (a, b) \subseteq (d)$. Hence (1) \Rightarrow (2). That (2) \Rightarrow (3) is trivial. Assume (3), and let $a, b \in D$ be such that (a, b) is contained in no proper principal ideal. Then gcd(a, b) = 1, and we have (a, b) = D (i.e., (a, b) is not a proper ideal) by (3). Thus (3) \Rightarrow (4). Finally, assume (4), and let $a, b \in D$ with gcd(a, b) = d. A standard argument yields gcd(a/d, b/d) = 1, so that (a/d, b/d) is not contained in a proper principal ideal. Thus (a/d, b/d) = D by (4) and hence (a, b) = (d). □

Now suppose that D is pre-Bézout, and let $a, b \in D$ with $(a, b)^v = D$. Then, as we have already observed, gcd(a, b) exists and is equal to 1 and hence (a, b) = D. This yields:

Corollary 2.4. A pre-Bézout domain is a DF-domain.

The converse of Corollary 2.4 is false. Let $L \subsetneq k$ be fields, **X** a set of indeterminates over k with $|\mathbf{X}| \ge 2$, M the maximal ideal of $k[\mathbf{X}]$ generated by **X**, and $D = L + Mk[\mathbf{X}]_{\mathbf{M}}$. It is well known that D is then a local domain whose maximal ideal is divisorial and hence a *t*-ideal. Since DW-domains are characterized as domains each of whose maximal ideals is a *t*-ideal ([26, Proposition 2.2] and [7, Lemma 2.1]), D is a DW-domain and hence a DF-domain. However, for $x \neq y \in \mathbf{X}$, we have gcd(x, y) = 1, but $(x, y) \subseteq D$.

In fact, we can characterize pre-Bézout domains among DF-domains. In [28] the authors call a domain D a GCD-Bézout domain if (a_1, a_2, \ldots, a_n) is principal whenever a_1, \ldots, a_n are elements of D with a greatest common divisor, and they show that a GCD-Bézout domain is a DW-domain. Indeed, in [28, Corollary 2.12], they characterize GCD-Bézout domains as DW-domains that satisfy the PSP-property of Arnold-Sheldon [2]. A domain D satisfies PSP (for primitive implies superprimitive) if for each finitely generated ideal I that is not contained in a proper principal ideal we have $I^v = D$. (This terminology arises as follows: an element $f \in D[X]$ is called *primitive* (resp. *superprimitive*) if c(f), the ideal of D generated by the coefficients of f, is not contained in a proper principal ideal of D (resp., satisfies $c(f)^v = D$).) Following [27], let us say that a domain satisfies LPSP-for linear PSP- if each two-generated ideal I not contained in a proper principal ideal satisfies $I^v = D$ (that is, if each primitive *linear* polynomial is superprimitive). Then we have the following:

Proposition 2.5. A domain D is pre-Bézout if and only if it is a DF-domain with LPSP.

Proof. Suppose that D is pre-Bézout. Then D is a DF-domain by Corollary 2.4. Also, for $a, b \in D$ with (a, b) not contained in a proper principal ideal, we have gcd(a, b) = 1, whence (a, b) = D and then $(a, b)^v = D$. Therefore, D also satisfies LPSP. Now suppose that D is DF and satisfies LPSP, and let $a, b \in D$ with gcd(a, b) = 1. Then (a, b) cannot be contained in a proper principal ideal, whence $(a, b)^v = D$ by LPSP. Since D is a DF-domain, we then have (a, b) = D. Therefore, D is pre-Bézout.

We don't know whether a pre-Bézout domain must be GCD-Bézout (but we doubt it). However:

Proposition 2.6. A local pre-Bézout domain is GCD-Bézout.

Proof. Let (D, M) be a local pre-Bézout domain. Then each proper 2-generated ideal of D is contained in a proper principal ideal by Lemma 2.3. We show that (in the local case) this extends to all finitely generated ideals. Thus let (a_1, \ldots, a_n) , n > 2, be a proper finitely generated ideal. By induction, we may assume that $(a_1, \ldots, a_{n-1}) \subseteq (b)$ for some $b \in M$. We also have $(a_n, b) \subseteq (c)$ for some $c \in M$, and hence $(a_1, \ldots, a_n) \subseteq (c) \subseteq M$, as desired. By [28, Proposition 2.6], D is a GCD-Bézout domain.

We next consider what happens when the DF-property is combined with other commonly considered properties.

Proposition 2.7. A DF-domain of finite t-character is a DW-domain.

Proof. Let D be a DF-domain of finite t-character, and let M be a maximal ideal of D. Then M is a maximal F-ideal and hence a maximal t-ideal by Proposition 1.8. Thus each maximal ideal of D is a maximal t-ideal, whence D is a DW-domain. \Box

In particular, the DF- and DW-properties coincide for Noetherian domains. Noetherian DW-domains of arbitrary dimension (including ∞) exist—see [21, Examples 2.1 and 2.7].

Let * be a star operation on a domain D. Then the *-dimension of D is the length of a longest chain of *-primes in D (where, for the purposes of this definition, (0) is counted as a *-prime). The next two results strengthen [26, Corollary 2.3].

Proposition 2.8. Let D have F-dimension one. Then the following statements are equivalent.

- (1) $\dim(D) = 1$.
- (2) D is a DW-domain.
- (3) D is a DF-domain.

Proof. Since height-one primes are *t*-primes, we obtain $(1) \Rightarrow (2)$ immediately, and $(2) \Rightarrow (3)$ is easy (Corollary 2.2). Assume (3). Then, since each maximal ideal of D is an F-prime and primes within an F-prime are F-primes by Corollary 1.4, D must have dimension one.

Observe that if D has finite t-character, then the t- and F-dimensions are the same by Proposition 1.8. It is well known that a Krull domain is a Dedekind domain if and only if it has dimension one. Then, since a Krull domain has finite t-character and has t-dimension one, we obtain:

Corollary 2.9. Let D be a Krull domain. Then the following statements are equivalent.

- (1) D is a DW-domain.
- (2) D is a DF-domain.
- (3) D is a Dedekind domain.

Since a Dedekind domain is a PID if and only if it is a UFD, we have:

Corollary 2.10. Let D be a UFD. The following statements are equivalent.

- (1) D is a DW-domain.
- (2) D is a DF-domain.

(3) D is a PID.

We next give a direct proof of a result of Mott and the second author [27, Corollary 6.6]. Recall that a domain D is *atomic* if each nonzero, nonunit of D factors as a product of atoms (irreducible elements).

Corollary 2.11. An atomic pre-Bézout domain is a PID.

Proof. Let D be an atomic pre-Bézout domain. By Corollary 2.10 it suffices to show that D is a UFD, and for this it suffices to show that each atom is prime. Thus let a be an atom, and suppose that $a \mid bc$ for some $b, c \in D$. If (a, b) is not contained in a proper principal ideal, then by assumption, we may write 1 = ar + bs with $r, s \in D$; multiplication by c then yields that $a \mid c$. Suppose that $(a, b) \subseteq (d)$ for some nonunit d. Then $a = dt, t \in D$. Since a is an atom, and d is not a unit, t must be a unit. Therefore, since $d \mid b$, we have that $a \mid b$, as desired.

Recall (see [1]) that a domain D is an almost GCD-domain (AGCD-domain) (resp., almost Bézout domain (ABD), almost Prüfer domain (APD), almost valuation domain (AVD)) if for all nonzero $a, b \in D$ there is a positive integer n for which $(a^n, b^n)^v$ is principal (resp., (a^n, b^n)) is principal, (a^n, b^n) is invertible, $a^n \mid b^n$ or $b^n \mid a^n$).

We have GCD and AGCD versions of Corollary 2.10; the latter strengthens [26, Corollary 2.6]. The other properties will be considered later.

8

Proposition 2.12. Let D be a GCD-domain (resp., AGCD-domain). Then the following statements are equivalent.

- (1) D is a DW-domain.
- (2) D is a DF-domain.
- (3) D is a Bézout domain (resp., AB-domain).

Proof. We give the proof for the AGCD case; the proof for the GCD case is similar (and easier). That statement (1) implies statement (2) is trivial. Assume statement (2), and let $a, b \in D$. Since D is an AGCD-domain, we have $(a^n, b^n)^v$ principal for some positive integer n. The DF-assumption then yields that (a^n, b^n) is principal. Hence D is an AB-domain. This gives (2) \Rightarrow (3). Finally, if D is an AB-domain, then D is a DW-domain by [26, Corollary 2.6].

It is clear that a domain D is local if and only if no two nonunits of D are comaximal. Since a local Bézout domain is a valuation domain, we have the following.

Corollary 2.13. A domain D is a valuation domain if and only if it is simultaneously a GCD-domain and a DF-domain in which no two nonunits of D are comaximal.

Recall that a Prüfer *v*-multiplication domain (PVMD) may be characterized as a domain D for which D_M is a valuation domain for each maximal *t*-ideal M of D. Examples of PVMDs include Prüfer, Krull, and GCD-domains. It is easy to see that a PVMD that is also a DW-domain is a Prüfer domain (and this was observed in [29, page 1967]), but we do not know whether a domain that is both a PVMD and a DF-domain must be Prüfer. However, recall that a domain is said to be a *ring of Krull type* if it is a PVMD of finite *t*-character [15]. Then by Proposition 2.7 (and the fact that d = t in a Prüfer domain):

Corollary 2.14. The following statements are equivalent for a domain D.

- (1) D is of Krull-type and is also a DF-domain
- (2) D is of Krull-type and is also a DW-domain.
- (3) D is a Prüfer domain of finite character.

3. LOCALIZATION

In this section, we discuss localization in connection with the DF-property. We begin with some facts about the relation between the F-operation on a domain D and the F-operation on a ring of quotients of D.

Lemma 3.1. Let D be a domain with overring E. Let * (resp., $*_1$) be a star operation on D (resp. E). For each nonzero fractional ideal I of D, set $I^{\delta(*,*_1)} = (IE)^{*_1} \cap I^*$. Then:

- (1) $\delta(*,*_1)$ is a star operation on D, and $\delta(*,*_1) \leq *$.
- (2) If $I^* \subseteq (IE)^{*_1}$ for each fractional ideal I of D, then $\delta(*,*_1) = *$; in this case each $*_1$ -ideal of E contracts to a *-ideal of D.
- (3) If S is a multiplicatively closed subset of D, then $\delta(F, F_{D_S}) = F$ and hence F-ideals of D_S contract to F-ideals of D.

Proof. (1) That $\delta(*, *_1)$ is a star operation on D follows immediately from [4, Theorem 2]. It is clear that $\delta(*, *_1) \leq *$.

(2) If $I^* \subseteq (IE)^{*_1}$, then $I^{\delta(*,*_1)} = (IE)^{*_1} \cap I^* = I^*$. Now let A be a $*_1$ -ideal of E. Then, by what was just proved, $(A \cap D)^* = ((A \cap D)E)^{*_1} \cap (A \cap D)^* \subseteq A \cap (A \cap D)^* \subseteq A \cap D$.

(3) By (2) we need show only that $I^F \subseteq (ID_S)^{F_{D_M}}$ for each nonzero fractional ideal I of D. Let I be a nonzero fractional ideal of D, and let $x \in D$ be such that $x(a,b) \subseteq I$ for $a,b \in D$ with $(a,b)^v = D$. By [31, Lemma 4], $((a,b)D_S)^v = D_S$, whence $x \in (ID_S)^{F_{D_S}}$. It follows that $I^F \subseteq (ID_S)^{F_{D_S}}$, as desired.

In [26, Theorem 2.9] Mimouni showed that a domain D for which D_M is a DWdomain for each maximal ideal M of D is itself DW. We have a similar result for the DF-property.

Proposition 3.2. For a domain D, if D_M is a DF-domain for each maximal ideal M of D, then D is a DF-domain.

Proof. Let M be a maximal ideal of D. Under the assumption that D_M is a DF-domain, we have that MD_M is an F-prime of D_M . By Lemma 3.1 M is an F-prime of D. Therefore, D is a DF-domain if each localization at a maximal ideal is DF. \Box

The converse of Proposition 3.2 is false. In fact, we next give an example of a DW-domain D with a maximal ideal M such that D_M is not a DF-domain. Note that this answers a question left open by Park and Tartarone [28, page 60].

Example 3.3. In [17] W. Heinzer and J. Ohm present an example of a domain D which is essential $(D = \bigcap D_{P_{\alpha}})$, where each P_{α} is a prime ideal of D and $D_{P_{\alpha}}$ is a valuation domain) but is not a PVMD. As further analyzed in [27] and [12], D has one height-two maximal ideal M, with M being a t-prime and D_M a regular local ring, and all other maximal ideals of D have height one (and are therefore t-primes). (Moreover, D_P is a rank-one discrete valuation domain for each height-one maximal ideal P; we use this fact below.) Thus D is a DW-domain, and hence a DF-domain, but, since MD_M is not an F-prime (since MD_M is 2-generated and satisfies $(MD_M)^{v_{D_M}} = D_M$), D_M is not a DF-domain.

As usual, we say that a domain has a given property locally if each localization at a maximal ideal has the property. Thus the example above is locally a PVMD. In fact, it is also locally a UFD (by the "moreover" statement in the example) and hence locally a GCD-domain and locally a Krull domain. The example "works" because MD_M is not an *F*-ideal. Recall from [32] that a domain *D* is (conditionally) well behaved if for each prime (maximal) *t*-ideal *P* of *D*, PD_P is a *t*-prime of D_P . Let us now call *D* (conditionally) *F*-well behaved if for each prime (maximal) *F*ideal of *D*, PD_P is an *F*-prime of D_P . Then the *D* of the example is neither conditionally well behaved nor conditionally *F*-well behaved.

It is clear that a Prüfer (resp., almost Prüfer) domain is locally GCD (resp., AGCD). We next find conditions that yield a converse.

Lemma 3.4. Let D be a local domain. Then the following statements are equivalent.

- (1) D is an APD.
- (2) D is an AVD.
- (3) D is an ABD.
- (4) D is both an AGCD-domain and a DW-domain.
- (5) D is both an AGCD-domain and a DF-domain.

Proof. The equivalence of (1), (2), and (3) follows from [1, Theorem 5.8]. Statements (3), (4), and (5) are equivalent by Proposition 2.12 (since an ABD is clearly an AGCD-domain).

Proposition 3.5. The following statements are equivalent for a domain D.

- (1) D is an APD (resp., Prüfer domain).
- (2) D is a well-behaved DW-domain that is locally AGCD (resp., locally GCD).
- (3) D is an F-well-behaved DF-domain that is locally AGCD (resp., locally GCD).

Proof. We give the proof for the "non-parenthetical" result. Let D be an APD, and let M be a maximal ideal of D. By [1, Theorem 5.8], D_M is an AVD and hence an AGCD-domain. In addition, PD_P is a t-prime of D_P for each t-prime P of D by [1, Lemma 5.2], i.e., D is well behaved. Finally, D is DW by [26, Corollary 2.11]. This gives $(1) \Rightarrow (2)$. Now let D satisfy the conditions in (2), let P be a prime ideal (automatically an F-prime) of D, and let M be a maximal ideal of D containing P. By hypothesis D_M is an AGCD DW-domain and hence an AVD by the lemma. Therefore, D_P , as an overring of D_M , is an AVD, whence PD_P is (a t-and hence) an F-prime of D_P , as desired. This proves $(2) \Rightarrow (3)$. Finally, suppose that D is an F-well behaved DF-domain that is also locally an AGCD-domain. If M is a maximal ideal of D, then D_M , being AGCD and DF, is an AVD-domain by the lemma. Hence D is an APD, again by [1, Theorem 5.8].

Recall that an *almost Dedekind domain* is a domain for which each localization at a maximal ideal is a rank-one discrete valuation domain.

Proposition 3.6. The following statements are equivalent for a domain D.

- (1) D is an almost Dedekind domain.
- (2) D is a well behaved DW-domain that is also locally a Krull domain.
- (3) D is an F-well behaved DF-domain that is also a locally a Krull domain.

Proof. It is clear that $(1) \Rightarrow (2)$. Let D be as in (2). Then for each maximal ideal M of D, D_M is DW and Krull and hence, by Corollary 2.9, a Dedekind domain. Thus D is in fact one dimensional, and (3) follows easily. Now let D be as in (3), and let M be a maximal ideal of D. Then D_M is both a DF-domain and a Krull domain and hence a (local) Dedekind domain by Corollary 2.9. Hence D_M is a rank-one discrete valuation domain. Therefore, $(3) \Rightarrow (1)$.

Similar arguments (using Corollary 2.14) yield the following result.

Proposition 3.7. A domain D is a Prüfer domain if and only if D is an F-well behaved DF-domain that is locally a ring of Krull type.

4. Connections with classical grade

As in [25] we call a sequence a_1, \ldots, a_n of D of elements of D an R-sequence if $(a_1, \ldots, a_n) \neq D$ and a_i is not a zero divisor on the module $D/(a_1, \ldots, a_{i-1})$ for $i = 1, \ldots, n$. The classical grade of an ideal I of D, denoted by G(I), is then the length of a longest R-sequence of elements of I. We note that this is "delicate" in the non-Noetherian setting (Kaplansky refrains from defining it there), as Hochster [17] has shown that it is possible for an ideal in a domain to have maximal R-sequences of different lengths.

Now recall Exercises 1 and 2 on page 102 of [25]. According to Exercise 1, if an ideal I of D satisfies $G(I) \ge 2$, then $I^{-1} = D$. Exercise 2 then provides a converse in case D is Noetherian. Note that it follows immediately from Exercise 1 that the first two elements of any R-sequence in D are v-coprime. Now suppose that an ideal I not only satisfies $I^{-1} = D$ but actually contains two v-coprime elements a, b. If $bc \in (a)$ for some $c \in D$, then one sees immediately that $c/a \in (a, b)^{-1} = D$ and hence $c \in (a)$. Therefore, a, b is an R-sequence. We state this formally:

Proposition 4.1. Let I be a nonzero proper ideal in a domain D. Then $G(I) \ge 2$ if and only if I contains a pair of v-coprime elements (and this pair is then an R-sequence). Thus G(I) < 2 for every ideal I of an DF-domain.

Corollary 4.2. Let I be a proper finitely generated ideal of an integral domain D, and suppose that I contains an element a which belongs to only finitely many maximal t-ideals of D. Then $G(I) \ge 2$ if and only if $I^{-1} = D$.

Proof. That $G(I) \geq 2$ implies $I^{-1} = D$ has already been discussed. Assume $I^{-1} = D$. Pick $a \in I$ with a contained in only finitely many maximal t-ideals of D. Since $I^{-1} = D$, I is contained in no maximal t-ideals of D, and we may use prime avoidance to pick $b \in I$ with (a, b) contained in no maximal t-ideal. We then have $(a, b)^{-1} = (a, b)^v = D$, whence a, b is an R-sequence by Proposition 4.1.

Corollary 4.3. Let D be a domain with finite t-character, and let I be a proper finitely generated ideal of D. Then $G(I) \ge 2$ if and only if $I^{-1} = D$.

We have the following result, which both generalizes, and provides an easier path to a solution of, Exercise 2 of [25].

Corollary 4.4. If I is an ideal of a TV-domain D, then $G(I) \ge 2$ if and only if $I^{-1} = D$.

Proof. Let I be an ideal in the TV-domain D, and assume that $I^{-1} = D$. Then $I^t = I^v = D$, and hence $J^{-1} = J^v = D$ for some finitely generated subideal J of I. By Corollary 4.3, we then have $G(I) \ge G(J) \ge 2$.

We note that the conclusion of Corollary 4.4 is not valid if D is only assumed to have finite *t*-character, for if D is a valuation domain with nonprincipal maximal ideal M, then D has finite (*t*-) character, but $M^{-1} = D$ and G(M) = 1.

In Proposition 1.8, we saw that in a domain of finite *t*-character, we have F-Max(D) = w-Max(D). In fact, by applying the ideas of this section, we can obtain a stronger conclusion (and thereby generalize [16, Proposition 3.3]):

Corollary 4.5. In a domain D of finite t-character, we have F = w.

Proof. Let D have finite t-character, and let I be an F-ideal of D. Suppose that $xJ \subseteq I$ for some $x \in D$ and finitely generated ideal J with $J^v = D$. By Corollary 4.3 (and Proposition 4.1), there are elements $a, b \in J$ with $(a, b)^v = D$. Since $x(a, b) \subseteq I$ and I is an F-ideal, this yields $x \in I$. Therefore I is also a w-ideal, as desired. \Box

5. Examples

In [30, Section 7], H. Uda presents an example showing that classical grade and polynomial grade can differ. We begin with a review of his example and then proceed to adapt it for our purposes. Specifically, we show that an appropriate localization satisfies $t_2 < t$ and F < w and is a DF-domain but not a DW-domain.

Except for a slight change in notation, here is Uda's example:

Example 5.1. Let k be a field and s, t, u indeterminates over k. Then set $A = k[s, t, u]_{(s,t,u)}$, and let P denote the maximal ideal of A. For each $\alpha, \beta \in P$, let $X_{\alpha\beta}$ be an indeterminate, and let $T = A[\{X_{\alpha\beta}\}]$. Let B denote the ideal of T generated by the $X_{\alpha\beta}$, and let $J = B^2$. Let N = PT + B, so that N is a maximal ideal of T, generated by s, t, u and the $X_{\alpha\beta}$. Now for each $\alpha, \beta \in P$, let $P_{\alpha\beta} = (\alpha, \beta)A$, and let $R = A + \sum P_{\alpha\beta}X_{\alpha\beta} + J$. Let $M = N \cap R$. Each $f \in R$ has a unique representation $f = f_0 + \sum f_{\alpha\beta}X_{\alpha\beta} + f_1$ with $f_0 \in A, f_{\alpha\beta} \in P_{\alpha\beta}$, and $f_1 \in J$.

Proposition 5.2. In Example 5.1:

- (1) T is integral over R.
- (2) M is a maximal ideal of R and a maximal t_2 -ideal.
- (3) $(PR)^t = R$, hence M is not a t-ideal.
- (4) $T_{R\setminus M} = T_N$.
- (5) R_M is not integrally closed.
- (6) MR_M is a t_2 -ideal but not a w-ideal of R_M . Hence in $D := R_M$, $t_2 < t$ and F < w.
- (7) D is a DF-domain but not a DW-domain.
- (8) D is not a pre-Bézout domain.
- (9) D does not have finite t-character. (Of course, since D is local with maximal ideal a t₂-ideal, D does have finite t₂-character.)

Proof. (1) This follows from the fact that $A \subseteq R$ and $X^2_{\alpha\beta} \in R$ for each α, β .

- (2) By (1) M is a maximal ideal of R. Let $f, g \in M$. Write $f = f_0 + \sum f_{\alpha\beta}X_{\alpha\beta} + f_1$ and $g = g_0 + \sum g_{\alpha\beta}X_{\alpha\beta} + g_1$ with $f_0, g_0 \in P$, $f_{\alpha\beta} \in P_{\alpha\beta}$, and $f_1, g_1 \in J$. Then $X_{f_0g_0}(f,g)R \subseteq R$, and we have $(f,g)^v \subseteq (R:_R X_{f_0g_0}) \subseteq M$ ([30, Lemma 7.1]).
- (3) It follows from [30, Proposition 7.3] that $((s, t, u)R)^v = R$.
- (4) Let $f \in T \setminus N$, and write f = a + g with $a \in A$ and $g \in (\{X_{\alpha\beta}\})T$. Then $f^{-1} = (a g)/(a^2 g^2)$ with $a^2 g^2 \in R \setminus M$.
- (5) We have $X_{\alpha\beta} \in T \setminus R_M$ for each $\alpha, \beta \in P$.
- (6) For $f, g \in M$, represent f, g as in (2). Then $X_{f_0g_0}(f, g)R \subseteq R$ with $X_{f_0g_0} \notin R_M$. It follows that $((f, g)R_M)^{v_{R_M}} \subseteq MR_M$ and hence that MR_M is a t_2 -ideal. On the other hand, M is not a w-ideal by (3) (since every maximal w-ideal is a maximal t-ideal); hence MR_M is not a w-ideal.
- (7) Since MR_M is a t_2 -ideal, it is also an F-ideal. Therefore, D is a DF-domain. On the other hand, D is not a DW-domain, since MR_M is not a t-ideal.
- (8) It is clear that s, t are not contained in a proper principal ideal of T_N . Hence (s,t)D is not contained in a proper principal ideal of D, i.e., (s,t)D is primitive. Of course, (s,t)D is not superprimitive and hence D does not have LPSP. Thus D is not pre-Bézout by Proposition 2.5.
- (9) Since D is not a DW-domain, D cannot have finite t-character by Proposition 2.7.

Remarks/Questions 5.3. Refer to Proposition 5.2.

(1) By (5), D is not integrally closed. Must an integrally closed DF-domain be DW? We doubt that this is true but have no counterexample.

- (2) Picozza and Tartarone [29, Theorem 3.7] prove that a DW-domain that is both integrally closed and satisfies the finite-conductor property must be a Prüfer domain. (A domain E is a finite conductor domain if $(a) \cap (b)$ is finitely generated for all $a, b \in E$.) The proof involves two steps: an integrally closed finite conductor domain is a PVMD, and a PVMD that is also a DW-domain must be a Prüfer domain. As we have already remarked, we do not know whether a DF-PVMD must be Prüfer (but we doubt it).
- (3) It is clear that $\dim(D) = \infty$. Every one-dimensional domain is a DW-domain. Are there two-dimensional, or at least finite-dimensional, examples of DF-domains that are not DW?
- (4) As mentioned in [16], if n > 2 and one substitutes *n*-generated ideals for two-generated ideals in the definitions of the t_2 - and *F*-operations, one obtains new star operations, dubbed the t_n - and F_n -operations (so that $F_2 = F$). Whether we always have $t_n = t$ or $F_n = w$ were left as open questions. However, by making obvious changes in Example 5.1, one can obtain, for each n > 1 a local domain D_n whose maximal ideal is a t_n - (and hence also an F_n -) ideal but is not an F_{n+1} -ideal.

In order to produce more examples of DF-domains that are not DW, we investigate the DF-property in pullback diagrams. Though our results generally parallel those of Mimouni for DW-domains [26], our proofs are somewhat more delicate due to the fact that ideals often must be two-generated. We need several facts about the behavior of v-ideals, etc., in pullbacks. For this we use [11] as a convenient reference, but the ideas actually come from [10].

Let T be a domain, M a maximal ideal of T, $\varphi : T \to k := T/M$ the natural projection, and D an integral domain contained in k. Then let $D = \varphi^{-1}(D)$ be the integral domain arising from the following pullback of canonical homomorphisms.

$$\begin{array}{ccc} R & \longrightarrow & D \\ \downarrow & & \downarrow \\ T & \stackrel{\varphi}{\longrightarrow} & T/M = k \end{array}$$

We shall refer to this as a diagram of type \Box .

Proposition 5.5 below allows one to produce many examples of DF-domains.

Lemma 5.4. In a pullback of type \Box :

- (1) If A is a F-ideal of D, then $\varphi^{-1}(A)$ is a F-ideal of R.
- (2) For each nonzero ideal A of D, $\varphi^{-1}(A^F) = \varphi^{-1}(A)^F$.
- (3) If Q is a maximal F-ideal of T, then $Q \cap R$ is a maximal F-ideal of R.

Proof. (1) Let A be a F-ideal of D, and let $I = \varphi^{-1}(A)$. Suppose $r(a, b) \subseteq I$, with $r, a, b \in R$ and $(a, b)^v = R$. By [11, Proposition 2.17(2b)], $(\varphi(a), \varphi(b))^{v_D} = D$. Since A is a F-ideal of D, this yields $\varphi(r) \in A$ and hence $r \in I$. Thus I is a F-ideal of R.

(2) Let A be a nonzero ideal of D. By (1), we have $\varphi^{-1}(A^F) \supseteq \varphi^{-1}(A)^F$. We now recall the notation of Definition 1.1: For a domain E with quotient field L and a subset J of L, we write $J' = \{y \in L \mid y(e, f) \subseteq J \text{ for some } e, f \in E \text{ with } (e, f)^{v_E} = E\}$. To complete the proof, it will suffice to show that $\varphi^{-1}(A') \subseteq \varphi^{-1}(A)'$. To this end, let $x \in \varphi^{-1}(A')$. Then $\varphi(x)(d_1, d_2) \subseteq A$ for elements $d_1, d_2 \in D$ with

14

 $(d_1, d_2)^{v_D} = D$. According to [20, Lemma 7 and its proof], there are elements r_1, r_2 in R for which $\varphi(r_i) = d_i$ for i = 1, 2 and $\varphi^{-1}(d_1, d_2) = (r_1, r_2)$. By [11, Proposition 2.17(1b)], we have $R = \varphi^{-1}((d_1, d_2)^{v_D}) = (r_1, r_2)^v$. Since $x(r_1, r_2) \subseteq \varphi^{-1}(A)$, we have $x \in \varphi^{-1}(A)'$, as desired.

(3) Let Q be a maximal F-ideal of T, and let $P = Q \cap R$. Suppose that P is not an F-prime of R. Then there are elements $a, b \in P$ for which $(a, b)^v = R$. Note that we cannot have $(a, b) \subseteq M$ since M is divisorial in R. Hence $((a, b)T)^{v_T} = T$ by [11, Proposition 2.5(2)], contradicting that Q is an F-prime of T.

Proposition 5.5. In a pullback of type \Box :

- (1) If T, D are DF-domains, then R is a DF-domain.
- (2) If T is local and D is a DF-domain, then R is a DF-domain.
- (3) If R is a DF-domain, then D is a DF-domain.

Proof. (1) Let P be a maximal ideal of R. If $P \supseteq M$, then $P = \varphi^{-1}(p)$ for a maximal ideal p of D [11, Theorem 1.9]. Since D is a DF-domain, p is an F-prime of D and hence P is an F-prime of R by Lemma 5.4. If P = M, then P is divisorial (and therefore an F-prime). If P is incomparable to M, then $P = Q \cap T$ for some maximal ideal Q of T [11, Theorem 1.9]. Since T is a DF-domain, Q is an F-prime and hence so is P by Lemma 5.4.

(2) This follows as in the proof of (1).

(3) Assume that R is DF, and let p be a maximal ideal of D. Then $P := \varphi^{-1}(p)$ is a maximal ideal of R, and, since R is a DF-domain, P is an F-prime of R. By Lemma 5.4 $P = P^F = \varphi^{-1}(p^F)$, whence $p = p^F$, that is, p is an F-prime of D.

According to [26, Theorem 3.1(1)], in a pullback diagram of type (\Box) , if R is DW, then so is D. Hence if we take D to be a DF-domain that is not DW (e.g., the D of Proposition 5.2) and T is either local or a DF-domain, then R is a DF-domain that is not DW.

6. Polynomial rings

Proposition 6.1. Let D be a domain, and Q a maximal t_2 -ideal of D[X]. Then Q is a maximal t-ideal of D[X]. Hence Q is either an upper to zero or the extension of a maximal t-ideal of D. Moreover, t-Max $(D[X]) = t_2$ -Max(D[X]) = w-Max(D[X]) = F-Max(D[X]).

Proof. If Q is an upper to zero, then Q is a t-ideal and must therefore be a maximal t-ideal. Hence we assume that $P = Q \cap D \neq (0)$. Suppose, by way of contradiction, that $Q^t = D[X]$. Then we have $f_1, \ldots, f_n \in Q$ with $(f_1, \ldots, f_n)^{-1} = D[X]$, and it is clear that we must then have $(c(f_1) + \cdots + c(f_n))^{-1} = D$. By a standard argument, we can then produce $f \in Q$ with $c(f) = c(f_1) + \cdots + c(f_n)$ (take $f = f_1 + X^{k_2}f_2 + \cdots + X^{k_n}f_n$ for appropriately chosen positive integers k_2, \ldots, k_n), so that $(c(f))^v = D$. Pick $a \in P$, $a \neq 0$. We claim that $(a, f)^v = D[X]$. (This is a another standard argument: suppose that $g \in (a, f)^{-1}$. Since $ga \in D[X]$, this puts $g \in K[X]$. We then use the content formula to get $c(f)^{r+1}c(g) = c(f)^r c(fg) \subseteq D$ for appropriately chosen r [13, Theorem 28.1]. Since $c(f)^v = D$, this yields $g \in D[X]$. Hence $(a, f)^v = (a, f)^{-1} = D[X]$, as claimed.) However, this contradicts the fact that Q is a t_2 -ideal. Hence $Q^t \neq D[X]$. It follows that Q must be a maximal t-ideal of D[X]. The "hence" statement now follows from [22, Proposition 1.1]. As to

the "moreover" statement, we have w-Max(E) = t-Max(E) for all domains E and w = F on D[X] [16, Theorem 4.5].

The following corollary strengthens [26, Proposition 2.12].

Corollary 6.2. For a domain D, D[X] is a DF-domain if and only if D is a field.

Proof. Suppose that D is not a field, and let M be a maximal ideal of D. Then (M, X) is a maximal ideal of D[X] that is not a t-ideal, hence not a F-ideal. Thus D is not a DF-domain. The converse is trivial.

For a prime ideal I of a domain D, it is well known that I is a *t*-ideal of D if and only if I[X] is a *t*-ideal of D[X]. This does not hold, however, for F or t_2 -ideals, as the next example shows.

Example 6.3. In Proposition 5.2, M[X] is not an F-ideal of D[X].

Proof. If M[X] is a *F*-ideal of D[X], then it must be a maximal *F*-ideal. (The only primes containing M[X] are of the form (M, f) with f monic. Then for any nonzero $a \in M$, we have $(a, f)^v = D[X]$, so that (M, f) is not an *F*-ideal.) However, by Proposition 6.1, this means that M is a (maximal) *t*-ideal of D, a contradiction. \Box

We remark that, although we always have F = w in D[X] [16, Theorem 4.5], we do not know whether a t_2 -prime of D[X] must be a t-ideal. (See [16] for some cases where the answer is yes.)

In [24] Kang extended the notion of the Nagata ring as follows. For a star operation * on D, let $N_* = \{g \in D[X] \mid c(g)^* = D\}$ (where c(g) denotes the content of g, i.e., the ideal of D generated by the coefficients of g). The *-Nagata ring is then $D[X]_{N_*}$. When * = d, we have the classical Nagata ring, usually denoted by D(X). In [29], the authors observe that $D[X]_{N_v}$ is always a DW-domain, and they prove that a domain D is DW if and only if D(X) is DW if and only if $D(X) = D[X]_{N_v}$. This leads to the question: When is $D[X]_{N_F}$ a DF-domain? We answer this question in the next result. We shall use the fact that the maximal ideals of $D[X]_{N_*}$ are the ideals $MD[X]_{N_*}$, where M is a maximal $*_f$ -ideal of D [24, Proposition 2.1].

Proposition 6.4. The following statements are equivalent for a domain D.

- (1) $D[X]_{N_F}$ is a DF-domain.
- (2) $D[X]_{N_F} = D[X]_{N_v}$.
- (3) $D[X]_{N_F}$ is a DW-domain.

Proof. Suppose that $D[X]_{N_F}$ is a DF-domain. Then each maximal ideal of $D[X]_{N_F}$ is an F-prime, and, using the fact that the F-operation has finite type and the above-mentioned description of $Max(D[X]_{N_F})$, we have that $MD[X]_{N_F}$ is an F-prime of $D[X]_{N_F}$ for each maximal F-ideal M of D. If follows that MD[X] is an F-prime, and hence, by Proposition 6.1, a t-prime of D[X] for each such M. Therefore, each maximal F-ideal of D is in fact a maximal t-ideal, and this yields that $D[x]_{N_F} = D[X]_{N_V}$. Hence $(1) \Rightarrow (2)$. It is clear that $(2) \Rightarrow (3) \Rightarrow (1)$.

References

- [1] D.D. Anderson and M. Zafrullah, Almost Bézout domains, J. Algebra 142 (1991), 285-309.
- [2] J. Arnold and P. Sheldon, Integral domains that satisfy Gauss's lemma, Michigan Math. J. 22 (1975), 39-51.

16

- [3] H. Adams, Factorization-prime ideals in integral domains, Pacific J. Math. 66 (1976), 1-8.
- [4] D.D. Anderson, Star operations induced by overrings, Comm. Algebra 16 (1988), 2535-2553.
- [5] D.D. Anderson and S. Cook, Two star operations and their induced lattices, Comm. Algebra 28 (2000), 2461-2475.
- [6] P. Cohn, Bézout rings and their subrings, Proc. Cambridge Philos. Soc. 64 (1968), 251-264.
- [7] D. Dobbs, E. Houston, T. Lucas, and M. Zafrullah, t-linked overrings and Prüfer vmultiplication domains, Comm. Algebra 17 (1985), 2835-2852.
- [8] D. Dobbs, E. Houston, T. Lucas, M. Roitman, M. Zafrullah, On t-linked overrings, Comm. Algebra 20 (1992), 1463-1488.
- S. El Baghdadi and M. Fontana, Semister linkedness and flatness, Pr
 üfer semistar multiplication domains, Comm. Algebra 32 (2004), 1101-1126.
- [10] M. Fontana and S. Gabelli, On the class group and the local class group of a pullback, J. Algebra 181 (1996), 803-835.
- [11] S. Gabelli and E. Houston, *Ideal theory in pullbacks*, in Non-Noetherian commutative ring theory, 199-227, Math. Appl. **520**, Kluwer Acad. Publ., Dordrecht, 2000.
- [12] S. Gabelli, E. Houston, and T. Lucas, The t#-property for integral domains, J. Pure Appl. Algebra 194 (2004), 281-298.
- [13] R. Gilmer, Multiplicative ideal theory, Marcel Dekker, New York, 1972.
- [14] R. Gilmer and T. Parker, Divisibility properties in semigroup rings, Michigan Math. J. 21 (1974), 65-86.
- [15] M. Griffin, Some results on v-multiplication rings, Canad. J. Math. 19 (1967), 710-722.
- [16] J. Hedstrom and E. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18 (1980) 37-44.
- [17] W. Heinzer and J. Ohm, An essential ring which is not a v-multiplication ring, Canad. J. Math. 25 (1973), 856-861.
- [18] M. Hochster, Pathological maximal R-sequences in quasilocal domains, Portugaliae Mathematics 38 (1979), 33-36.
- [19] E. Houston, T. Lucas, and T.M. Viswanathan, Primary decomposition of divisorial ideals in Mori domains, J. Algebra 117 (1988), 327-342.
- [20] E. Houston, Generating ideals in pullbacks, J. Commut. Algebra 1 (2009), 275-281.
- [21] E. Houston and A. Mimouni, On the divisorial spectrum of a Noetherian domain, J. Pure Appl. Algebra 214 (2010), 47-52.
- [22] E. Houston and M. Zafrullah, On t-invertibility II, Comm. Algebra 17 (1989), 1955-1969.
- [23] E. Houston and M. Zafrullah, Integral domains in which each t-ideal is divisorial, Michigan Math. J. 35 (1988), 291-300.
- [24] B.G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra 123 (1989), 151-170.
- [25] I. Kaplansky, Commutative Rings, Allyn and Bacon, New York 1970.
- [26] A. Mimouni, Integral domains in which every ideal is a w-ideal, Comm. Algebra 33 (2005), 1345-1355.
- [27] J. Mott and M. Zafrullah, On Pr
 üfer v-multiplication domains, Manuscripta Math. 35 (1981), 1-26.
- [28] M.H. Park and F. Tartarone, Divisibility properties related to star operations on integral domains, Int. Electron. J. Algebra 12 (2012), 53-74.
- [29] G. Picozza and F. Tartarone, When the semistar operation *⋆* is the identity, Comm. Algebra 36 (2008), 1954-1975.
- [30] H. Uda, LCM-stableness in ring extensions, Hiroshima Math. J. 13 (1983), 357-377.
- [31] M. Zafrullah, On finite conductor domains, Manuscripta Math 80 (1993), 225-138.
- [32] M. Zafrullah, On well-behaved prime t-ideals, J. Pure Appl. Algebra 65 (1990), 199-207.
- [33] M. Zafrullah, What v-coprimality can do for you, in Multiplicative ideal theory in commutative algebra, 387–404, Springer, New York, 2006.

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF NORTH CAROLINA AT CHAR-LOTTE, CHARLOTTE, NC 28223 U.S.A.

 $E\text{-}mail\ address: \texttt{eghousto@uncc.edu}$

DEPARTMENT OF MATHEMATICS, IDAHO STATE UNIVERSITY, POCATELLO, ID 83209 U.S.A. *E-mail address*: mzafrullah@usa.net