INTEGRAL DOMAINS IN WHICH ANY TWO »-COPRIME
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ABSTRACT. Domains in which the star operations d (the trivial star operation)
and w coincide have received a good deal of attention recently. These are
exactly the domains D in which I = D whenever I is a finitely generated
ideal of D with I¥ = D. In this work, we study what happens when “finitely
generated” is replaced by “two-generated.” It turns out that these are precisely
the domains in which d = F, where F' is a certain star operation closely
connected to, but more complicated than, the w-operation.

INTRODUCTION

Throughout this work, D denotes a domain, and K denotes its quotient field.
We recall the v-operation: For a nonzero fractional ideal I of D, we set I~ = (D :
I)={ue K|ul C D} and then IV = (I7')~!. (The map I ~ IV is an example
of a star operation; we review pertinent definitions below as needed.) We say that
nonzero elements a,b € D are v-coprime if (a,b)” = D and comazimal if (a,b) = D.
It is easy to see that a and b are v-coprime if and only if (a,b)~! = D if and only if
(a)N(b) = (ab). The primary purpose of this work is to study DF-domains, domains
D in which a,b € D are comaximal whenever a, b are v-coprime. The terminology
arises as follows. In [3] H. Adams studied F-prime (shortened from factorization-
prime) ideals. These are primes that contain no pair of v-coprime elements. She
called an ideal I of D an F-ideal if whenever a,b,x € D with (a,b)’ = D and
x(a,b) C I we have x € I. As is pointed out in [16], an F-ideal is precisely an ideal
I satisfying I = I for a certain star operation F on D, and we shall show that
DF-domains are precisely those domains for which the d-operation (the identity
star operation) is identical to the F-operation.

Examples of DF-domains include Priifer domains and one-dimensional domains.
If fact, these are examples of DW-domains, that is, domains in which the two star
operations d and w (reviewed below) coincide. DW-domains were introduced (but
not named) in [7] and further studied in [8] (where they were called ¢-linkative
domains), [26], [28], and [29]. Tt is easy to see that D is a DW-domain if and only
if I is principal for each finitely generated ideal I of D such that IV is principal
(see [28, Proposition 2.1]). Hence DW-domains are DF-domains, but we shall show
(Proposition 5.2) that DF-domains form a properly larger class.

Recall that GCD-domains may be characterized as those domains D in which
(@, b)" is principal for all nonzero a,b € D. Now, it is well known that if (a, b)) = (d)
for a given pair of elements a,b in a domain D, then ged(a, b) exists and is equal to
d, but the converse is false. Thus domains D in which (a,b) is principal whenever
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a,b are elements of D such that ged(a, b) exists might be expected to form a strictly
smaller class that the class of DF-domains. This is indeed the case. In fact the
property just mentioned is easily seen to be equivalent to (a,b) = D whenever
a,b are elements of D for which ged(a,b) = 1, and domains with this property
were called pre-Bézout domains by Cohn [6]. Interestingly, the “finitely generated
version” of this property has recently been studied by Park and Tartarone: they
call a domain D GCD-Bézout if (ai,...,a,) = (d) whenever ay,...,a, € D and
ged(ar, ..., an) =d.

In Section 1 we review terminology of star operations and study two particular
star operations, the F- and ts-operations, both defined in [16]. In Section 2 we
give several characterizations of DF-domains, study their properties, compare and
contrast the class of DF-domains with the other classes mentioned above, and
explore what happens when we combine the DF-property with other well-studied
properties (such as GCD, Krull). Section 3 is devoted to studying localization. We
prove that a domain D for which D), is a DF-domain for each maximal ideal M of
D is a DF-domain, but we also give an example of a DF- (in fact, a DW-) domain
D with a maximal ideal M such that Dj; is not DF, thus answering a question
left open in [28]. We also consider other properties locally, proving, for example,
that a domain D is a Priifer domain if and only if it is a DF-domain that is locally
a GCD-domain and is such that F-primes localize (to F-primes). We devote a
brief Section 4 to connections with regular sequences. Our main result here is a
generalization of the fact that in a Noetherian domain D, an ideal I has (classical)
grade at least 2 if and only if I=! = D [25, Exercise 2, page 102]. In Section 5
we analyze an example of Uda [30] to show that the DF-property is weaker than
the DW-property. We also study the behavior of the DF-property in pullbacks,
yielding many more examples of DF-domains (that are not DW-domains). Finally,
in Section 6, we consider polynomial and Nagata rings. We show, for example, that
D[X] is a DF-domain if and only if D is a field.

1. THE F- AND t9-OPERATIONS

We begin by recalling some basic facts about star operations. Denote by F(D)
(resp., f(D)) the set of nonzero fractional (resp., nonzero finitely generated frac-
tional) ideals of D. A star operation on D is then a mapping I — I* of F(D) into
F(D) such that for all nonzero a € K and I,J € F(D),

(1) (aD)* = aD and al* = (al)*;
(2) I CI* and I C J implies I* C J*; and
@) (") =1

For any star operation * on D, two new star operations *; and *, can be
constructed by setting, for I € F(D), I*f = |J{J* | J C I and J € f(D)} and
I ={x € K | aJ C I for some J € f(D) with J* = D}. A star operation x
on D is said to be of finite type if * = *;; hence *; and *,, are of finite type. An
ideal I € F(D) is said to be a x-ideal if [* = I, and a x-ideal is called a mazimal
x-ideal if it is maximal among proper integral x-ideals. We denote by x-Max(D)
the set of maximal x-ideals of D. Assuming D is not a field, it is known that
each maximal *-ideal is prime, that *;-maximal ideals are plentiful in the sense
that each nonzero #-ideal (and hence each nonzero element) of D is contained in

a maximal *s-ideal, that a prime ideal minimal over a *s-ideal is itself a * g-ideal,
and that *p-Max(D) = #,-Max(D) [5, Theorem 2.16]. Also, if I € F(D), then
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I* = ﬂPE*f_MaX(D) IDp [5, Corollary 2.10], and hence I**Dp = IDp for each
P € xp-Max(D). The best-known star operations are the d-, v- (defined above),
t-, and w-operations. The d-operation is just the identity function on F(D), so
that d = dy = d,,. The t-operation (resp., w-operation) is given by ¢ = vy (resp.,
w = vy,). For two star operations *; and 2 on D, we write *; < %9 when [** C [*2
for all I € F(D) (and #; < %5 when x; < %3 but %; # x3). It is known that
d <y <xp <x <0, %, <w, and *¢ < ¢ for any star operation * on D.

We next recall the definitions of the t5- and F-operations.

Definition 1.1. Let J C K and I € F(D).

(1) For the to-operation: Set J = |J{(a,b)" | a,b € J}. Then set Iy = I,
I, = (I,_1) forn >0, and I*> = UZO:O Ii,. The ty-operation was shown in
[16] to be a finite-type star operation.

(2) For the F-operation: Set J' = {x € K | z(a,b) C J for some a,b €
J with (a,b)” = D}. Then let Iy = I, I, = (I,—1)" for n > 0, and
IF = Up_ o Ix. It was observed in [16] that this defines a finite-type star
operation on D (but most of the necessary details were already present in

3])-

Observe that the t5- and F-operations are similar to the ¢- and w-operations,
the differences being that finite subsets are replaced by two-element subsets and
iteration is required. Clearly, we have F' < t5, F < w, and t2 < ¢t. In [16], an
example was given showing that it is possible to have F' < to; in fact, in that
example, it is easy to see that we have d = F = w < t5. In Example 5.1 below, we
show that it is possible to have F' < w and ts < t, answering questions posed in
[16].

Although the to- and F-operations are defined inductively, only one step is
needed to determine whether a given ideal is a t5- or F-ideal:

Lemma 1.2. Let I be a nonzero ideal of a domain D. Then the following state-
ments hold.
(1) I is a ta-ideal if (a,b)” C I whenever a,b € 1.
(2) I is an F-ideal if © € I whenever z(a,b) C I with x,a,b € D and (a,b)” =
D.
(3) I is a prime F-ideal (F-prime) if I does not contain any pair of v-coprime
elements.

Proof. Statements (1) and (2) follow easily from the definitions. For (3), suppose
that I is as hypothesized and that z(a,b) C I with (a,b)” = D. Then, (a,b) € I,
so that we must have x € I. Hence I is an F-ideal by (2). O

As has already been mentioned, for any star operation * on D, we may define
%y by I* = |J{( : J) | J is a finitely generated subideal of I and J* = D}, and

we have v,, = t, = w.
Proposition 1.3. For any domain D, the F'- and Fy,-operations on D are identical.

Proof. Since F,, < F by definition, it suffices to show that each F,,-ideal is also an
F-ideal. Accordingly, let I be an Fy-ideal of D, and suppose that x,a,b € D are
such that (a,b)” = D and z(a,b) C I. Since 1(a,b) C (a,bd) and (a,b)” = D, we have
(a,b)f = D and hence z € I"+ = I. The result now follows from Lemma 1.2. O
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For any *-operation on D, it is known that if P is a %,-prime of D, then every
prime ideal contained in P is also a #,,-prime. Hence we have the following:

Corollary 1.4. If P is an F-prime of D, then so is every nonzero prime of D
contained in P. O

Questions 1.5. Let D be a domain.
(1) Must we have F-Max(D) C to-Max(D)?
(2) Must we have F-Max(D) = t3-Max(D)?
(3) If I is an ideal of D with I'* = D, do we necessarily have I = D?
(4) Do we have to-Max(D) C F-Max(D)?
(5) What conditions on D ensure ty = t7
(6) In general, we have F' = Fy, < (t2) < w. When do we have F' = (t3),, or
(tg)w =w?

It is not difficult to show that Questions (1)-(3) are equivalent:

Lemma 1.6. Suppose that x1 < %o are finite-type star operations on D. Then the
following statements are equivalent.

(1) *1-Max(D) C *9-Max(D).

(2) #1-Max(D) = *9-Max(D).

(3) If I is an ideal of D with I*> = D, then I** = D.

Proof. Assume (1), and let M € %5-Max(D). Since %1 < %o, we have M** # D.
Hence M is contained in a maximal *j-ideal N of D. However, by assumption,
this yields N € xo-Max(D), and we must therefore have M = N, that is, M €
x1-Max(D). Thus (1) = (2). Assume (2), and let I satisfy I** # D. Then I C M
for some M € x;-Max(D) = *o-Max(D), and we have I*2 C M C D. Hence (2)
= (3). Finally, assume (3), and let M € %;-Max(D). Then M*' # D, whence,
by assumption, M*2 £ D. Since M™*? is a *j-ideal and M C M™*2, this yields
M = M*2. Thus M is a *s-ideal. Since every *so-ideal is also a x;-ideal, M cannot
be contained in a larger #o-ideal, i.e., M € x3-Max(D). O

Recall that if * is a star operation on D, then we say that D has finite *-character
if each nonzero element of D is contained in only finitely many maximal *-ideals of
D. (When * = d, one says that D has finite character.)

Proposition 1.7. If D has finite to-character, then to-Max(D) = F-Max(D).

Proof. Suppose that D has finite ty-character, and let M € F-Max(D). If M is
not a ty-ideal, then, since every ts-ideal is a F-ideal, we have M? = D. Choose a
nonzero element a € M. Then a is in only finitely many maximal t,-ideals, and,
since M2 = D, we may use prime avoidance to find b € M with (a, b) in no maximal
to-ideal, that is, (a,b)"? = D. However, this yields (a,b)” = D, contradicting that
M is a maximal F-ideal. Thus M must be a ts-ideal and hence a maximal ¢5-ideal.
The result now follows from Lemma 1.6. O

Proposition 1.8. If D has finite t-character, then t-Max(D) = to-Max(D) =
F-Max(D) = w-Max(D). In particular, finite t-character implies both finite to-
and finite F-character.

Proof. Assume that D has finite t-character, and let M be a maximal to-ideal of
D. If M is not a t-ideal, then M* = D, and, as in the proof of Proposition 1.7, we
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can find a,b € M with (a,b) in no maximal ¢-ideal of D. But then (a,b)” = D, a
contradiction. Hence t-Max(D) = to-Max(D), and D also has finite ¢o-character. A
similar conclusion for maximal F-ideals now follows from Proposition 1.7. Finally,
it is well know that t-Max(D) = w-Max(D) in general ([5, Theorem 2.16]). O

It follows from Proposition 1.7 that finite to-character implies finite F-character.
However, it does not imply finite ¢-character—see Proposition 5.2 below.

In [22] the authors introduced the class of T'V-domains, domains in which the ¢-
operation coincides with the v-operation. By [22, Theorem 1.3], TV-domains have
finite t-character, so that Proposition 1.8 applies to this class of domains. Now
recall that a domain is a Mori domain if it satisfies the ascending chain condition on
divisorial ideals. It was observed in [22] that the class of TV-domains includes (but
is properly larger than) the class of Mori domains. In particular, Proposition 1.8
applies to Noetherian domains. Actually, for Mori domains, we can say a good deal
more:

Proposition 1.9. Let D be a Mori domain. Then every to-prime of D is a t-prime.

Proof. Let P be a to-prime of D, and let a be a nonzero element of P. By [19, The-
orem 2.1], a is contained in only finitely many ¢-primes of D. Use prime avoidance
to choose b € P with b in no t-prime ) of D for which a €  and @ € P. Since P
is a to-prime, (a,b)” C P. Shrink P to a prime Py minimal over (a,b)". Then P is
a t-prime, and by construction we must have P = F,. (Il

We suspect that Questions (1) - (4) above have negative answers in general. With
respect to Question 5, we do not even know whether ¢t = t in a one-dimensional
local Noetherian domain. (We do know from Proposition 5.2 below that ¢ < ¢ can
occur (albeit in a domain that is far from being Noetherian).)

2. DF-DOMAINS

We begin this section with several characterizations of DF-domains. We recall
the definition: The domain D is a DF-domain if for a,b € D with (a,b)* = D, we
have (a,b) = D. Now recall from [7] that an overring E of a domain D is t-linked
over D if (E : IE) = E whenever [ is a finitely generated ideal of D with I=1 = D,
equivalently, if (JE)'® = E whenever J is an ideal of D with J* = D. It was shown
that every overring of D is t-linked over D if and only if every maximal ideal of D
is a t-ideal, i.e., if and only if D is a DW-domain. In [9] the notion of ¢-linkedness
was extended as follows. Given D and an overring E and star operations * on D
and %1 on F, E is (x,*1)-linked over D if (JE)** = E whenever J is an ideal of D
with J* = D.

Theorem 2.1. The following statements are equivalent for a domain D.

1) D is a DF-domain.

2) a,b € D with (a,b)” = (d) implies (a,b) = (d).

3) a,b € D with (a,b)" principal implies (a,b) principal.

4) Each nonzero ideal of D is an F-ideal; equivalently, the d- and F-operations
on D are identical.

(5) Fach mazimal ideal of D is an F-prime.
(6) For every overring E of D, E is (F, Fg)-linked over D.

(
(
(
(
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Proof. (1) = (2): Let D be a DF-domain, and let a,b € D with (a,b)” = dD for
some d € D. Then (a/d,b/d)” = (1/d)(a,b)” = D. Since D is a DF-domain, this
yields (a/d,b/d) = D and, therefore, (a,b) = dD.

(2) = (3): Trivial.

(3) = (4): Assume (3). Let I be a nonzero ideal of D, and suppose that x(a,b) C
I with (a,b)” = D. By (3) (a,b) = (c¢) for some ¢ € D. Hence D = (a,b)” = (¢) =
(a,b), and we have z € I. Therefore, I = I.

(4) = (5): Trivial.

(5) = (6): Assume (5), let E be an overring of D, and let I be an ideal of D with
I¥ = D. If (IE)f® # E, then IE is contained in a maximal F-ideal Q of E. Let
M be a maximal ideal of D containing @ N D. Then M is an F-prime. However,
I¥ = D and I C M, a contradiction.

(6) = (1): Assume (6), and let a,b € D with (a,b)" = D. Then (a,b)" = D also.
Suppose, by way of contradiction, that (a,b) is a proper ideal of D, and let M be
a maximal ideal containing (a,b). Then there is a valuation overring V' of D whose
maximal ideal N satisfies N N D = M. By assumption, we have ((a,b)V)fv = V.
However, every ideal of V is a t-ideal and hence also an Fy-ideal, and this yields
((a,b)V)IV = (a,b)V C N, a contradiction. O

Since F' < w for all domains, the following is immediate.
Corollary 2.2. A DW-domain is a DF-domain. (I

We consider another property stronger than DF. Recall that in [6] Cohn defined
a pre-Bézout domain to be a domain D satisfying the following property: a,b € D
with ged(a,b) = 1 implies (a,b) = D. We list a few equivalent conditions:

Lemma 2.3. The following statements are equivalent for a domain D.
(1) a,b € D with ged(a,b) = d implies (a,b) principal.
(2) a,b € D with ged(a,b) = d implies (a,b) = (d).
(3) D is a pre-Bézout domain.
(4) Each proper 2-generated ideal of D is contained in a proper principal ideal.

Proof. Assume (1), and let a,b € D with ged(a,b) = d. Then (a,b) is principal,
say (a,b) = (¢). Since ¢ | a and ¢ | b, we have (d) C (¢). On the other hand,
(¢) = (a,b) C (d). Hence (1) = (2). That (2) = (3) is trivial. Assume (3), and
let a,b € D be such that (a,b) is contained in no proper principal ideal. Then
ged(a, b) = 1, and we have (a,b) = D (i.e., (a,b) is not a proper ideal) by (3). Thus
(3) = (4). Finally, assume (4), and let a,b € D with ged(a,b) = d. A standard
argument yields ged(a/d,b/d) = 1, so that (a/d,b/d) is not contained in a proper
principal ideal. Thus (a/d,b/d) = D by (4) and hence (a,b) = (d). O

Now suppose that D is pre-Bézout, and let a,b € D with (a,b)” = D. Then, as
we have already observed, ged(a,b) exists and is equal to 1 and hence (a,b) = D.
This yields:

Corollary 2.4. A pre-Bézout domain is a DF-domain. ([

The converse of Corollary 2.4 is false. Let L C k be fields, X a set of indeter-
minates over k with |X| > 2, M the maximal ideal of k[X] generated by X, and
D = L+ ME[X]m. It is well known that D is then a local domain whose max-
imal ideal is divisorial and hence a t-ideal. Since DW-domains are characterized
as domains each of whose maximal ideals is a t-ideal ([26, Proposition 2.2] and [7,



WHEN ANY TWO v-COPRIME ELEMENTS ARE COMAXMAL 7

Lemma 2.1]), D is a DW-domain and hence a DF-domain. However, for z # y € X,
we have ged(z,y) =1, but (x,y) € D.

In fact, we can characterize pre-Bézout domains among DF-domains. In [28] the
authors call a domain D a GCD-Bézout domain if (ag, as, ..., a,) is principal when-
ever aj,...,a, are elements of D with a greatest common divisor, and they show
that a GCD-Bézout domain is a DW-domain. Indeed, in [28, Corollary 2.12], they
characterize GCD-Bézout domains as DW-domains that satisfy the PSP-property
of Arnold-Sheldon [2]. A domain D satisfies PSP (for primitive implies superprimi-
tive) if for each finitely generated ideal I that is not contained in a proper principal
ideal we have I = D. (This terminology arises as follows: an element f € D[X]
is called primitive (resp. superprimitive) if c¢(f), the ideal of D generated by the
coefficients of f, is not contained in a proper principal ideal of D (resp., satisfies
¢(f)? = D).) Following [27], let us say that a domain satisfies LPSP—for linear
PSP- if each two-generated ideal I not contained in a proper principal ideal satis-
fies IV = D (that is, if each primitive linear polynomial is superprimitive). Then
we have the following:

Proposition 2.5. A domain D is pre-Bézout if and only if it is a DF-domain with
LPSP.

Proof. Suppose that D is pre-Bézout. Then D is a DF-domain by Corollary 2.4.
Also, for a,b € D with (a,b) not contained in a proper principal ideal, we have
ged(a,b) = 1, whence (a,b) = D and then (a,b)” = D. Therefore, D also satis-
fies LPSP. Now suppose that D is DF and satisfies LPSP, and let a,b € D with
ged(a,b) = 1. Then (a,b) cannot be contained in a proper principal ideal, whence
(a,b)" = D by LPSP. Since D is a DF-domain, we then have (a,b) = D. Therefore,
D is pre-Bézout. O

We don’t know whether a pre-Bézout domain must be GCD-Bézout (but we
doubt it). However:

Proposition 2.6. A local pre-Bézout domain is GCD-Bézout.

Proof. Let (D, M) be a local pre-Bézout domain. Then each proper 2-generated
ideal of D is contained in a proper principal ideal by Lemma 2.3. We show that (in
the local case) this extends to all finitely generated ideals. Thus let (aq,...,a,),
n > 2, be a proper finitely generated ideal. By induction, we may assume that
(a1,...,an-1) C (b) for some b € M. We also have (an,b) C (c) for some ¢ € M,
and hence (ai,...,a,) C (¢) € M, as desired. By [28, Proposition 2.6], D is a
GCD-Bézout domain. O

We next consider what happens when the DF-property is combined with other
commonly considered properties.

Proposition 2.7. A DF-domain of finite t-character is a DW-domain.

Proof. Let D be a DF-domain of finite t-character, and let M be a maximal ideal of
D. Then M is a maximal F-ideal and hence a maximal ¢-ideal by Proposition 1.8.
Thus each maximal ideal of D is a maximal ¢-ideal, whence D is a DW-domain. [

In particular, the DF- and DW-properties coincide for Noetherian domains. Noe-
therian DW-domains of arbitrary dimension (including co) exist-see [21, Examples
2.1 and 2.7].
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Let * be a star operation on a domain D. Then the x-dimension of D is the
length of a longest chain of x-primes in D (where, for the purposes of this definition,
(0) is counted as a #-prime). The next two results strengthen [26, Corollary 2.3].

Proposition 2.8. Let D have F-dimension one. Then the following statements
are equivalent.

(1) dim(D) = 1.

(2) D is a DW-domain.

(3) D is a DF-domain.

Proof. Since height-one primes are t-primes, we obtain (1) = (2) immediately, and
(2) = (3) is easy (Corollary 2.2). Assume (3). Then, since each maximal ideal of
D is an F-prime and primes within an F-prime are F-primes by Corollary 1.4, D
must have dimension one. O

Observe that if D has finite t-character, then the t- and F-dimensions are the
same by Proposition 1.8. It is well known that a Krull domain is a Dedekind domain
if and only if it has dimension one. Then, since a Krull domain has finite ¢-character
and has t-dimension one, we obtain:

Corollary 2.9. Let D be a Krull domain. Then the following statements are
equivalent.

(1) D is a DW-domain.

(2) D is a DF-domain.

(3) D is a Dedekind domain. O

Since a Dedekind domain is a PID if and only if it is a UFD, we have:

Corollary 2.10. Let D be a UFD. The following statements are equivalent.
(1) D is a DW-domain.
(2) D is a DF-domain.
(3) D is a PID. O

We next give a direct proof of a result of Mott and the second author [27,
Corollary 6.6]. Recall that a domain D is atomic if each nonzero, nonunit of D
factors as a product of atoms (irreducible elements).

Corollary 2.11. An atomic pre-Bézout domain is a PID.

Proof. Let D be an atomic pre-Bézout domain. By Corollary 2.10 it suffices to
show that D is a UFD, and for this it suffices to show that each atom is prime.
Thus let a be an atom, and suppose that a | be for some b,c € D. If (a,b) is not
contained in a proper principal ideal, then by assumption, we may write 1 = ar +bs
with 7, s € D; multiplication by ¢ then yields that a | ¢. Suppose that (a,b) C (d)
for some nonunit d. Then a = dt, t € D. Since a is an atom, and d is not a unit, ¢
must be a unit. Therefore, since d | b, we have that a | b, as desired. ([l

Recall (see [1]) that a domain D is an almost GCD-domain (AGCD-domain)
(vesp., almost Bézout domain (ABD), almost Priifer domain (APD), almost valua-
tion domain (AVD)) if for all nonzero a,b € D there is a positive integer n for which
(a™,b™)? is principal (resp., (a™,b™)) is principal, (a™,d") is invertible, a™ | b" or
b"a™).

We have GCD and AGCD versions of Corollary 2.10; the latter strengthens [26,
Corollary 2.6]. The other properties will be considered later.
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Proposition 2.12. Let D be a GCD-domain (resp., AGCD-domain). Then the
following statements are equivalent.

(1) D is a DW-domain.
(2) D is a DF-domain.
(3) D is a Bézout domain (resp., AB-domain,).

Proof. We give the proof for the AGCD case; the proof for the GCD case is similar
(and easier). That statement (1) implies statement (2) is trivial. Assume statement
(2), and let a,b € D. Since D is an AGCD-domain, we have (a”, b™)? principal for
some positive integer n. The DF-assumption then yields that (a™,b™) is principal.
Hence D is an AB-domain. This gives (2) = (3). Finally, if D is an AB-domain,
then D is a DW-domain by [26, Corollary 2.6]. O

It is clear that a domain D is local if and only if no two nonunits of D are comax-
imal. Since a local Bézout domain is a valuation domain, we have the following.

Corollary 2.13. A domain D is a valuation domain if and only if it is simul-
taneously a GCD-domain and a DF-domain in which no two nonunits of D are
comazximal. (]

Recall that a Priifer v-multiplication domain (PVMD) may be characterized as
a domain D for which D), is a valuation domain for each maximal ¢-ideal M of D.
Examples of PVMDs include Priifer, Krull, and GCD-domains. It is easy to see
that a PVMD that is also a DW-domain is a Priifer domain (and this was observed
in [29, page 1967]), but we do not know whether a domain that is both a PVMD
and a DF-domain must be Priifer. However, recall that a domain is said to be a
ring of Krull type if it is a PVMD of finite ¢-character [15]. Then by Proposition 2.7
(and the fact that d =t in a Priifer domain):

Corollary 2.14. The following statements are equivalent for a domain D.

(1) D is of Krull-type and is also a DF-domain
(2) D is of Krull-type and is also a DW-domain.
(3) D is a Prifer domain of finite character. O

3. LOCALIZATION

In this section, we discuss localization in connection with the DF-property. We
begin with some facts about the relation between the F-operation on a domain D
and the F-operation on a ring of quotients of D.

Lemma 3.1. Let D be a domain with overring E. Let * (resp., *1) be a star
operation on D (resp. E). For each nonzero fractional ideal I of D, set JoGox1) =
(IE)* N I*. Then:
(1) 6(*,%1) is a star operation on D, and §(x,*1) < *.
(2) If I* C (IE)* for each fractional ideal I of D, then §(x,x1) = x; in this
case each x1-ideal of E contracts to a *-ideal of D.
(3) If S is a multiplicatively closed subset of D, then §(F, Fpy) = F and hence
F-ideals of Dg contract to F-ideals of D.

Proof. (1) That §(x,*1) is a star operation on D follows immediately from [4,
Theorem 2]. It is clear that §(x, %) < *.
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(2) If I* C (IE)*t, then I°C*1) = (IE)*» N I* = I*. Now let A be a *;-ideal
of E. Then, by what was just proved, (AN D)* = (AND)E)Y** N (AN D)* C
AN(ANnD)*C AnD.

(3) By (2) we need show only that I C (IDg)¥Pum for each nonzero fractional
ideal I of D. Let I be a nonzero fractional ideal of D, and let x € D be such that
z(a,b) C I for a,b € D with (a,b)” = D. By [31, Lemma 4], ((a,b)Dg)" = Dg,
whence x € (IDg)Ps. It follows that I¥ C (IDg)¥Ps, as desired. O

In [26, Theorem 2.9] Mimouni showed that a domain D for which D, is a DW-
domain for each maximal ideal M of D is itself DW. We have a similar result for
the DF-property.

Proposition 3.2. For a domain D, if Dy; is a DF-domain for each mazimal ideal
M of D, then D is a DF-domain.

Proof. Let M be a maximal ideal of D. Under the assumption that D, is a DF-
domain, we have that M D, is an F-prime of Dy;. By Lemma 3.1 M is an F-prime
of D. Therefore, D is a DF-domain if each localization at a maximal ideal is DF. [

The converse of Proposition 3.2 is false. In fact, we next give an example of a
DW-domain D with a maximal ideal M such that Dj; is not a DF-domain. Note
that this answers a question left open by Park and Tartarone [28, page 60].

Ezample 3.3. In [17) W. Heinzer and J. Ohm present an example of a domain D
which is essential (D = () Dp,, where each P, is a prime ideal of D and Dp_ is
a valuation domain) but is not a PVMD. As further analyzed in [27] and [12], D
has one height-two maximal ideal M, with M being a t-prime and Dj; a regular
local ring, and all other maximal ideals of D have height one (and are therefore
t-primes). (Moreover, Dp is a rank-one discrete valuation domain for each height-
one maximal ideal P; we use this fact below.) Thus D is a DW-domain, and hence
a DF-domain, but, since M D, is not an F-prime (since M D), is 2-generated and
satisfies (M Djps)"P» = Dypy), Dy is not a DF-domain.

As usual, we say that a domain has a given property locally if each localization
at a maximal ideal has the property. Thus the example above is locally a PVMD.
In fact, it is also locally a UFD (by the “moreover” statement in the example) and
hence locally a GCD-domain and locally a Krull domain. The example “works”
because M D)y is not an F-ideal. Recall from [32] that a domain D is (conditionally)
well behaved if for each prime (maximal) ¢-ideal P of D, PDp is a t-prime of Dp.
Let us now call D (conditionally) F-well behaved if for each prime (maximal) F-
ideal of D, PDp is an F-prime of Dp. Then the D of the example is neither
conditionally well behaved nor conditionally F-well behaved.

It is clear that a Priifer (resp., almost Priifer) domain is locally GCD (resp.,
AGCD). We next find conditions that yield a converse.

Lemma 3.4. Let D be a local domain. Then the following statements are equiva-
lent.

(1) D is an APD.
(2) D is an AVD.
(3) D is an ABD.
(4) D is both an AGCD-domain and a DW-domain.
(5) D is both an AGCD-domain and a DF-domain.



WHEN ANY TWO v-COPRIME ELEMENTS ARE COMAXMAL 11

Proof. The equivalence of (1), (2), and (3) follows from [1, Theorem 5.8]. State-
ments (3), (4), and (5) are equivalent by Proposition 2.12 (since an ABD is clearly
an AGCD-domain). O

Proposition 3.5. The following statements are equivalent for a domain D.
(1) D is an APD (resp., Prifer domain).
(2) D is a well-behaved DW-domain that is locally AGCD (resp., locally GCD).
(3) D is an F-well-behaved DF-domain that is locally AGCD (resp., locally
GCD,).

Proof. We give the proof for the “non-parenthetical” result. Let D be an APD,
and let M be a maximal ideal of D. By [1, Theorem 5.8], Djs is an AVD and
hence an AGCD-domain. In addition, PDp is a t-prime of Dp for each ¢t-prime P
of D by [1, Lemma 5.2], i.e., D is well behaved. Finally, D is DW by [26, Corollary
2.11]. This gives (1) = (2). Now let D satisfy the conditions in (2), let P be a
prime ideal (automatically an F-prime) of D, and let M be a maximal ideal of D
containing P. By hypothesis Dj; is an AGCD DW-domain and hence an AVD by
the lemma. Therefore, Dp, as an overring of Dy, is an AVD, whence PDp is (a t-
and hence) an F-prime of Dp, as desired. This proves (2) = (3). Finally, suppose
that D is an F-well behaved DF-domain that is also locally an AGCD-domain. If
M is a maximal ideal of D, then Dj;, being AGCD and DF, is an AVD-domain by
the lemma. Hence D is an APD, again by [1, Theorem 5.8]. O

Recall that an almost Dedekind domain is a domain for which each localization
at a maximal ideal is a rank-one discrete valuation domain.

Proposition 3.6. The following statements are equivalent for a domain D.

(1) D is an almost Dedekind domain.
(2) D is a well behaved DW-domain that is also locally a Krull domain.
(3) D is an F-well behaved DF-domain that is also a locally a Krull domain.

Proof. Tt is clear that (1) = (2). Let D be as in (2). Then for each maximal ideal
M of D, Dy; is DW and Krull and hence, by Corollary 2.9, a Dedekind domain.
Thus D is in fact one dimensional, and (3) follows easily. Now let D be as in (3),
and let M be a maximal ideal of D. Then Dy, is both a DF-domain and a Krull
domain and hence a (local) Dedekind domain by Corollary 2.9. Hence Dy is a
rank-one discrete valuation domain. Therefore, (3) = (1). O

Similar arguments (using Corollary 2.14) yield the following result.

Proposition 3.7. A domain D is a Priifer domain if and only if D is an F-well
behaved DF-domain that is locally a ring of Krull type. [l

4. CONNECTIONS WITH CLASSICAL GRADE

As in [25] we call a sequence aq,...,a, of D of elements of D an R-sequence if
(a1,...,an) # D and a; is not a zero divisor on the module D/(aq,...,a;—1) for
i =1,...,n. The classical grade of an ideal I of D, denoted by G(I), is then the
length of a longest R-sequence of elements of I. We note that this is “delicate” in the
non-Noetherian setting (Kaplansky refrains from defining it there), as Hochster [17]
has shown that it is possible for an ideal in a domain to have maximal R-sequences
of different lengths.
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Now recall Exercises 1 and 2 on page 102 of [25]. According to Exercise 1, if an
ideal I of D satisfies G(I) > 2, then I~! = D. Exercise 2 then provides a converse
in case D is Noetherian. Note that it follows immediately from Exercise 1 that
the first two elements of any R-sequence in D are v-coprime. Now suppose that
an ideal I not only satisfies I~! = D but actually contains two v-coprime elements
a,b. If be € (a) for some ¢ € D, then one sees immediately that ¢/a € (a,b)™! = D
and hence ¢ € (a). Therefore, a,b is an R-sequence. We state this formally:

Proposition 4.1. Let I be a nonzero proper ideal in a domain D. Then G(I) > 2
if and only if I contains a pair of v-coprime elements (and this pair is then an
R-sequence). Thus G(I) < 2 for every ideal I of an DF-domain. ]

Corollary 4.2. Let I be a proper finitely generated ideal of an integral domain
D, and suppose that I contains an element a which belongs to only finitely many
mazimal t-ideals of D. Then G(I) > 2 if and only if 7! = D.

Proof. That G(I) > 2 implies I~! = D has already been discussed. Assume I~! =
D. Pick a € I with a contained in only finitely many maximal t-ideals of D.
Since I~! = D, I is contained in no maximal t-ideals of D, and we may use prime
avoidance to pick b € I with (a,b) contained in no maximal ¢-ideal. We then have
(a,b)~! = (a,b)’ = D, whence a, b is an R-sequence by Proposition 4.1. O

Corollary 4.3. Let D be a domain with finite t-character, and let I be a proper
finitely generated ideal of D. Then G(I) > 2 if and only if 71 = D.

We have the following result, which both generalizes, and provides an easier path
to a solution of, Exercise 2 of [25].

Corollary 4.4. If I is an ideal of a TV-domain D, then G(I) > 2 if and only if
I"'=D.

Proof. Let I be an ideal in the TV-domain D, and assume that I=' = D. Then
I' = IV = D, and hence J~! = J¥ = D for some finitely generated subideal J of I.
By Corollary 4.3, we then have G(I) > G(J) > 2. O

We note that the conclusion of Corollary 4.4 is not valid if D is only assumed to
have finite t-character, for if D is a valuation domain with nonprincipal maximal
ideal M, then D has finite (¢-) character, but M~! = D and G(M) = 1.

In Proposition 1.8, we saw that in a domain of finite ¢-character, we have
F-Max(D) = w-Max(D). In fact, by applying the ideas of this section, we can
obtain a stronger conclusion (and thereby generalize [16, Proposition 3.3]):

Corollary 4.5. In a domain D of finite t-character, we have F' = w.

Proof. Let D have finite t-character, and let I be an F-ideal of D. Suppose that
xJ C I for some x € D and finitely generated ideal J with J¥ = D. By Corollary 4.3
(and Proposition 4.1), there are elements a,b € J with (a,b)” = D. Since z(a,b) C I
and [ is an F-ideal, this yields x € I. Therefore I is also a w-ideal, as desired. [

5. EXAMPLES

In [30, Section 7], H. Uda presents an example showing that classical grade and
polynomial grade can differ. We begin with a review of his example and then
proceed to adapt it for our purposes. Specifically, we show that an appropriate
localization satisfies t5 < t and F' < w and is a DF-domain but not a DW-domain.
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Except for a slight change in notation, here is Uda’s example:

Example 5.1. Let k be a field and s,t,u indeterminates over k. Then set A =
k[s,t,u](s,t,u), and let P denote the maximal ideal of A. For each o, 8 € P, let Xop
be an indeterminate, and let T' = A[{X,ps}]. Let B denote the ideal of T generated
by the X,5, and let J = B2. Let N = PT + B, so that N is a maximal ideal of T,
generated by s,t,u and the X,5. Now for each o, 5 € P, let Po3 = (v, 5)A, and let
R=A+) P.,sXap+J. Let M = NNR. Each f € R has a unique representation
f = f() +Zfa6Xaﬁ +f1 with fO € Aa faﬁ € Paﬂa and fl e J.

Proposition 5.2. In Example 5.1:

(1)

(9)

T is integral over R.

M is a mazimal ideal of R and a mazximal ta-ideal.

(PR)! = R, hence M is not a t-ideal.

T\ =Tn-

Rys is not integrally closed.

MRy is a ta-ideal but not a w-ideal of Ry;. Hence in D := Ry, to < t
and F < w.

D is a DF-domain but not a DW-domain.

D is not a pre-Bézout domain.

D does not have finite t-character. (Of course, since D is local with mazimal
ideal a ta-ideal, D does have finite ty-character.)

(1) This follows from the fact that A C R and X7, € R for each a, .
By (1) M is a maximal ideal of R. Let f,g € M. Write f = fo +
> fapXap + f1and g = go + Y gapXap + g1 With fo,90 € P, fap € Pag,
and f1,01 € J. Then Xy, (f,9)R C R, and we have (f,g)" C (R :r
Xjo00) € M ([30, Lemma 7.1]).

It follows from [30, Proposition 7.3] that ((s,¢,u)R)” = R.
Let f € T\ N, and write f = a+ g with a € A and g € ({Xas})T. Then
f~t=(a—g)/(a® — g% witha®> —g> € R\ M.
We have X,3 € T\ Ry for each o, 8 € P.
For f,g € M, represent f,g asin (2). Then Xy 4, (f,9)R C R with Xy 4, ¢
Ryy. Tt follows that ((f, g)Ra)"#v C M Ry and hence that M Ry is a to-
ideal. On the other hand, M is not a w-ideal by (3) (since every maximal
w-ideal is a maximal ¢-ideal); hence M Ry is not a w-ideal.
Since M Ry, is a to-ideal, it is also an F-ideal. Therefore, D is a DF-domain.
On the other hand, D is not a DW-domain, since M Rj; is not a t-ideal.
It is clear that s,¢ are not contained in a proper principal ideal of Ty.
Hence (s,t)D is not contained in a proper principal ideal of D, i.e., (s,t)D
is primitive. Of course, (s,t)D is not superprimitive and hence D does not
have LPSP. Thus D is not pre-Bézout by Proposition 2.5.
Since D is not a DW-domain, D cannot have finite ¢-character by Proposi-
tion 2.7.

O

Remarks/Questions 5.3. Refer to Proposition 5.2.

(1)

By (5), D is not integrally closed. Must an integrally closed DF-domain be
DW? We doubt that this is true but have no counterexample.
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(2) Picozza and Tartarone [29, Theorem 3.7] prove that a DW-domain that is
both integrally closed and satisfies the finite-conductor property must be
a Priifer domain. (A domain E is a finite conductor domain if (a) N (b)
is finitely generated for all a,b € E.) The proof involves two steps: an
integrally closed finite conductor domain is a PVMD, and a PVMD that is
also a DW-domain must be a Priifer domain. As we have already remarked,
we do not know whether a DF-PVMD must be Priifer (but we doubt it).

(3) It is clear that dim(D) = oco. Every one-dimensional domain is a DW-
domain. Are there two-dimensional, or at least finite-dimensional, examples
of DF-domains that are not DW?

(4) As mentioned in [16], if n > 2 and one substitutes n-generated ideals for
two-generated ideals in the definitions of the ¢5- and F-operations, one
obtains new star operations, dubbed the t,- and F,,-operations (so that
Fy = F). Whether we always have t,, = t or F,, = w were left as open
questions. However, by making obvious changes in Example 5.1, one can
obtain, for each n > 1 a local domain D,, whose maximal ideal is a t,,- (and
hence also an F,-) ideal but is not an F},;-ideal.

In order to produce more examples of DF-domains that are not DW, we investi-
gate the DF-property in pullback diagrams. Though our results generally parallel
those of Mimouni for DW-domains [26], our proofs are somewhat more delicate due
to the fact that ideals often must be two-generated. We need several facts about
the behavior of v-ideals, etc., in pullbacks. For this we use [11] as a convenient
reference, but the ideas actually come from [10].

Let T be a domain, M a maximal ideal of T, ¢ : T' — k := T'/M the natural
projection, and D an integral domain contained in k. Then let D = ¢~1(D) be the
integral domain arising from the following pullback of canonical homomorphisms.

R —— D

! l

T —2— T/M=k
We shall refer to this as a diagram of type .
Proposition 5.5 below allows one to produce many examples of DF-domains.

Lemma 5.4. In a pullback of type [I:
(1) If A is a F-ideal of D, then ¢~(A) is a F-ideal of R.
(2) For each nonzero ideal A of D, o~ (AF) = p=1(A)F.
(3) If Q is a mazimal F-ideal of T, then Q N R is a maximal F-ideal of R.

Proof. (1) Let A be a F-ideal of D, and let I = ¢~*(A). Suppose r(a,b) C I,
with r,a,b € R and (a,b)” = R. By [11, Proposition 2.17(2b)], (¢(a), ¢(b))"? = D.
Since A is a F-ideal of D, this yields ¢(r) € A and hence r € I. Thus [ is a F-ideal
of R.

(2) Let A be a nonzero ideal of D. By (1), we have p~1(AF) D o=} (A)F. We
now recall the notation of Defnition 1.1: For a domain E with quotient field L and a
subset J of L, we write J' = {y € L | y(e, f) C J for some e, f € E with (e, f)"E =
E}. To complete the proof, it will suffice to show that p=1(A4’) C ¢~1(A). To
this end, let € ¢ 1(A’). Then p(x)(d1,d2) C A for elements di,ds € D with
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(d1,d2)"? = D. According to [20, Lemma 7 and its proof], there are elements 71, ro
in R for which ¢(r;) = d; fori = 1,2 and p~1(dy,ds) = (r1,72). By [11, Proposition
2.17(1b)], we have R = p~1((dy,d2)"?) = (r1,72)". Since z(r1,r2) C ¢ 1(A), we
have x € ¢~ 1(A)’, as desired.

(3) Let @ be a maximal F-ideal of T, and let P = Q N R. Suppose that P is
not an F-prime of R. Then there are elements a,b € P for which (a,b)” = R. Note
that we cannot have (a,b) C M since M is divisorial in R. Hence ((a,b)T)""T =T
by [11, Proposition 2.5(2)], contradicting that @ is an F-prime of T'. a

Proposition 5.5. In a pullback of type OI:

(1) If T, D are DF-domains, then R is a DF-domain.
(2) If T is local and D is a DF-domain, then R is a DF-domain.
(3) If R is a DF-domain, then D is a DF-domain.

Proof. (1) Let P be a maximal ideal of R. If P 2 M, then P = o !(p) for a
maximal ideal p of D [11, Theorem 1.9]. Since D is a DF-domain, p is an F-prime
of D and hence P is an F-prime of R by Lemma 5.4. If P = M, then P is divisorial
(and therefore an F-prime). If P is incomparable to M, then P = QN T for some
maximal ideal @ of T' [11, Theorem 1.9]. Since T is a DF-domain, ) is an F-prime
and hence so is P by Lemma 5.4.

(2) This follows as in the proof of (1).

(3) Assume that R is DF, and let p be a maximal ideal of D. Then P := ¢~1(p)
is a maximal ideal of R, and, since R is a DF-domain, P is an F-prime of R. By
Lemma 5.4 P = P = ¢~ 1(p%"), whence p = p¥', that is, p is an F-prime of D. O

According to [26, Theorem 3.1(1)], in a pullback diagram of type (O), if R is
DW, then so is D. Hence if we take D to be a DF-domain that is not DW (e.g., the
D of Proposition 5.2) and T is either local or a DF-domain, then R is a DF-domain
that is not DW.

6. POLYNOMIAL RINGS

Proposition 6.1. Let D be a domain, and Q a mazximal ta-ideal of D[X]. Then
Q is a mazimal t-ideal of D[X]. Hence @ is either an upper to zero or the ex-
tension of a mazimal t-ideal of D. Moreover, t-Maz(D[X]) = to-Maz(D[X]) =
w-Max(D[X]) = F-Max(D[X]).

Proof. If Q) is an upper to zero, then @ is a t-ideal and must therefore be a maximal
t-ideal. Hence we assume that P = QN D # (0). Suppose, by way of contradiction,
that Q' = D[X]. Then we have f1,...,f, € Q with (f1,..., f,)"! = D[X], and
it is clear that we must then have (c(f1) + -+ + c¢(f,))”! = D. By a standard
argument, we can then produce f € @ with ¢(f) = c(f1) + - - + c(fn) (take
f=fitX*fo.. 4 XFnf, for appropriately chosen positive integers ko, . .., k),
so that (¢(f))” = D. Pick a € P, a # 0. We claim that (a, f)? = D[X]. (This is a
another standard argument: suppose that g € (a, f)~!. Since ga € D[X], this puts
g € K[X]. We then use the content formula to get ¢(f)""1c(g) = ¢(f)"c(fg) C D for
appropriately chosen r [13, Theorem 28.1]. Since ¢(f)” = D, this yields g € D[X].
Hence (a, f)” = (a, f)~! = D[X], as claimed.) However, this contradicts the fact
that Q is a ta-ideal. Hence Q' # D[X]. It follows that @ must be a maximal t-ideal
of D[X]. The “hence” statement now follows from [22, Proposition 1.1]. As to
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the “moreover” statement, we have w-Max(F) = t-Max(FE) for all domains E and
w = F on D[X] [16, Theorem 4.5]. O

The following corollary strengthens [26, Proposition 2.12].
Corollary 6.2. For a domain D, D[X] is a DF-domain if and only if D is a field.

Proof. Suppose that D is not a field, and let M be a maximal ideal of D. Then
(M, X) is a maximal ideal of D[X] that is not a t-ideal, hence not a F-ideal. Thus
D is not a DF-domain. The converse is trivial. (Il

For a prime ideal I of a domain D, it is well known that I is a t-ideal of D if and
only if I[X] is a t-ideal of D[X]. This does not hold, however, for F' or ¢s-ideals, as
the next example shows.

Ezample 6.3. In Proposition 5.2, M[X] is not an F-ideal of D[X].

Proof. If M[X] is a F-ideal of D[X], then it must be a maximal F-ideal. (The only
primes containing M[X] are of the form (M, f) with f monic. Then for any nonzero
a € M, we have (a, f)* = D[X], so that (M, f) is not an F-ideal.) However, by
Proposition 6.1, this means that M is a (maximal) ¢-ideal of D, a contradiction. O

We remark that, although we always have F' = w in D[X] [16, Theorem 4.5], we
do not know whether a to-prime of D[X] must be a t-ideal. (See [16] for some cases
where the answer is yes.)

In [24] Kang extended the notion of the Nagata ring as follows. For a star
operation x on D, let N, = {g € D[X] | ¢(9)* = D} (where ¢(g) denotes the
content of g, i.e., the ideal of D generated by the coefficients of g). The %-Nagata
ring is then D[X]|y,. When x = d, we have the classical Nagata ring, usually
denoted by D(X). In [29], the authors observe that D[X]y, is always a DW-
domain, and they prove that a domain D is DW if and only if D(X) is DW if
and only if D(X) = D[X]y,. This leads to the question: When is D[X]n, a DF-
domain? We answer this question in the next result. We shall use the fact that the
maximal ideals of D[X]y, are the ideals M D[X]y,, where M is a maximal *s-ideal
of D [24, Proposition 2.1].

Proposition 6.4. The following statements are equivalent for a domain D.
(1) D[X]n, is a DF-domain.
(2) DIX]n, = D[X]n,
(3) D[X|np is a DW-domain.

Proof. Suppose that D[X]y,. is a DF-domain. Then each maximal ideal of D[ X]n,.
is an F-prime, and, using the fact that the F-operation has finite type and the
above-mentioned description of Max(D[X]y,), we have that M D[X]|y, is an F-
prime of D[X]|y, for each maximal F-ideal M of D. If follows that M D[X] is
an F-prime, and hence, by Proposition 6.1, a ¢-prime of D[X] for each such M.
Therefore, each maximal F-ideal of D is in fact a maximal t-ideal, and this yields
that D[z]n, = D[X]n,. Hence (1) = (2). It is clear that (2) = (3) = (1). O
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