INTEGRAL DOMAINS IN WHICH ANY TWO \(v \)-COPRIME ELEMENTS ARE COMAXIMAL

Evan Houston and Muhammad Zafurrayah

Abstract. Domains in which the star operations \(d \) (the trivial star operation) and \(w \) coincide have received a good deal of attention recently. These are exactly the domains \(D \) in which \(I = D \) whenever \(I \) is a finitely generated ideal of \(D \) with \(I^v = D \). In this work, we study what happens when “finitely generated” is replaced by “two-generated.” It turns out that these are precisely the domains in which \(d = F \), where \(F \) is a certain star operation closely connected to, but more complicated than, the \(w \)-operation.

Introduction

Throughout this work, \(D \) denotes a domain, and \(K \) denotes its quotient field. We recall the \(v \)-operation: For a nonzero fractional ideal \(I \) of \(D \), we set \(I^{-1} = (D : I) = \{ u \in K \mid uI \subseteq D \} \) and then \(I^v = (I^{-1})^{-1} \). (The map \(I \mapsto I^v \) is an example of a star operation; we review pertinent definitions below as needed.) We say that nonzero elements \(a, b \in D \) are \(v \)-coprime if \((a, b)^v = D \) and comaximal if \((a, b) = D \). It is easy to see that \(a \) and \(b \) are \(v \)-coprime if and only if \((a, b) \cap (a, b)^{-1} = D \) if and only if \((a, b) = (ab) \). The primary purpose of this work is to study \(DF \)-domains, domains \(D \) in which \(a, b \in D \) are comaximal whenever \(a, b \) are \(v \)-coprime. The terminology arises as follows. In [3] H. Adams studied \(F \)-prime (shortened from factorization-prime) ideals. These are primes that contain no pair of \(v \)-coprime elements. She called an ideal \(I \) of \(D \) an \(F \)-ideal if whenever \(a, b, x \in D \) with \((a, b)^v = D \) and \(x(a, b) \subseteq I \) we have \(x \in I \). As is pointed out in [16], an \(F \)-ideal is precisely an ideal \(I \) satisfying \(I^F = I \) for a certain star operation \(F \) on \(D \), and we shall show that \(DF \)-domains are precisely those domains for which the \(d \)-operation (the identity star operation) is identical to the \(F \)-operation.

Examples of \(DF \)-domains include Prüfer domains and one-dimensional domains. If fact, these are examples of \(DW \)-domains, that is, domains in which the two star operations \(d \) and \(w \) (reviewed below) coincide. DW-domains were introduced (but not named) in [7] and further studied in [8] (where they were called \(t \)-linkative domains), [26], [28], and [29]. It is easy to see that \(D \) is a DW-domain if and only if \(I \) is principal for each finitely generated ideal \(I \) of \(D \) such that \(I^v \) is principal (see [28, Proposition 2.1]). Hence DW-domains are DF-domains, but we shall show (Proposition 5.2) that DF-domains form a properly larger class.

Recall that GCD-domains may be characterized as those domains \(D \) in which \((a, b)^v \) is principal for all nonzero \(a, b \in D \). Now, it is well known that if \((a, b)^v = (d) \) for a given pair of elements \(a, b \) in a domain \(D \), then gcd\((a, b) \) exists and is equal to \(d \), but the converse is false. Thus domains \(D \) in which \((a, b) \) is principal whenever...
1. The F- and t_2-operations

We begin by recalling some basic facts about star operations. Denote by $F(D)$ (resp., $f(D)$) the set of nonzero fractional (resp., nonzero finitely generated fractional) ideals of D. A star operation on D is then a mapping $I \mapsto I^*$ of $F(D)$ into $F(D)$ such that for all nonzero $a \in K$ and $I, J \in F(D)$,

(1) $(aD)^* = aD$ and $aI^* = (aI)^*$;
(2) $I \subseteq I^*$, and $I \subseteq J$ implies $I^* \subseteq J^*$; and
(3) $(I^*)^* = I^*$.

For any star operation $*$ on D, two new star operations $*_f$ and $*_w$ can be constructed by setting, for $I \in F(D)$, $I^*_f = \bigcup\{J^* \mid J \subseteq I \text{ and } J \in f(D)\}$ and $I^*_w = \{x \in K \mid xJ \subseteq I \text{ for some } J \in f(D) \text{ with } J^* = D\}$. A star operation $*$ on D is said to be of finite type if $* = *_f$; hence $*_f$ and $*_w$ are of finite type. An ideal $I \in F(D)$ is said to be a $*$-ideal if $I^* = I$, and a $*$-ideal is called a maximal $*$-ideal if it is maximal among proper integral $*$-ideals. We denote by $\text{Max}^*(D)$ the set of maximal $*$-ideals of D. Assuming D is not a field, it is known that each maximal $*$-ideal is prime, that $*_f$-maximal ideals are plentiful in the sense that each nonzero $*_f$-ideal (and hence each nonzero element) of D is contained in a maximal $*_f$-ideal, that a prime ideal minimal over a $*_f$-ideal is itself a $*_f$-ideal, and that $*_f-\text{Max}(D) = *_w-\text{Max}(D)$ [5, Theorem 2.16]. Also, if $I \in F(D)$, then

a, b are elements of D such that $\gcd(a, b)$ exists might be expected to form a strictly smaller class that the class of DF-domains. This is indeed the case. In fact the property just mentioned is easily seen to be equivalent to $(a, b) = D$ whenever a, b are elements of D for which $\gcd(a, b) = 1$, and domains with this property were called pre-Bézout domains by Cohn [6]. Interestingly, the “finitely generated version” of this property has recently been studied by Park and Tartarone: they call a domain D GCD-Bézout if $(a_1, \ldots, a_n) = (d)$ whenever $a_1, \ldots, a_n \in D$ and $\gcd(a_1, \ldots, a_n) = d$.

In Section 1 we review terminology of star operations and study two particular star operations, the F- and t_2-operations, both defined in [16]. In Section 2 we give several characterizations of DF-domains, study their properties, compare and contrast the class of DF-domains with the other classes mentioned above, and explore what happens when we combine the DF-property with other well-studied properties (such as GCD, Krull). Section 3 is devoted to studying localization. We prove that a domain D for which D_M is a DF-domain for each maximal ideal M of D is a DF-domain, but we also give an example of a DF- (in fact, a DW-) domain D with a maximal ideal M such that D_M is not DF, thus answering a question left open in [28]. We also consider other properties locally, proving, for example, that a domain D is a Prüfer domain if and only if it is a DF-domain that is locally a GCD-domain and is such that F-primes localize (to F-primes). We devote a brief Section 4 to connections with regular sequences. Our main result here is a generalization of the fact that in a Noetherian domain D, an ideal I has (classical) grade at least 2 if and only if $I^{-1} = D$ [25, Exercise 2, page 102]. In Section 5 we analyze an example of Uda [30] to show that the DF-property is weaker than the DW-property. We also study the behavior of the DF-property in pullbacks, yielding many more examples of DF-domains (that are not DW-domains). Finally, in Section 6, we consider polynomial and Nagata rings. We show, for example, that $D[X]$ is a DF-domain if and only if D is a field.
\[I^* = \bigcap_{P \in \text{Max}(D)} ID_P \] (5, Corollary 2.10), and hence \(I^* \cap \text{ID}_P = \text{ID}_P \) for each \(P \in \text{Max}(D) \). The best-known star operations are the \(d \)-, \(\vdash \) (defined above), \(t \)-, and \(w \)-operations. The \(d \)-operation is just the identity function on \(F(D) \), so that \(d = d_f = d_w \). The \(t \)-operation (resp., \(w \)-operation) is given by \(t = v_f \) (resp., \(w = v_w \)). For two star operations \(\ast_1 \) and \(\ast_2 \) on \(D \), we write \(\ast_1 \leq \ast_2 \) when \(I^{\ast_1} \subseteq I^{\ast_2} \) for all \(I \in F(D) \) (and \(\ast_1 \leq \ast_2 \) when \(\ast_1 \leq \ast_2 \) but \(\ast_1 \neq \ast_2 \)). It is known that \(d \leq \ast_w \leq \ast_f \leq \ast \leq v \), \(\ast_w \leq w \), and \(\ast_f \leq t \) for any star operation \(\ast \) on \(D \).

We next recall the definitions of the \(t_2 \)- and \(F \)-operations.

Definition 1.1. Let \(J \subseteq K \) and \(I \in F(D) \).

1. For the \(t_2 \)-operation: Set \(J' = \bigcup \{(a,b)^v : a, b \in J\} \). Then set \(I_0 = I \), \(I_n = (I_{n-1})' \) for \(n > 0 \), and \(I^{t_2} = \bigcup_{k=0}^{\infty} I_k \). The \(t_2 \)-operation was shown in [16] to be a finite-type star operation.

2. For the \(F \)-operation: Set \(J' = \{ x \in K : x(a,b) \subseteq J \text{ for some } a, b \in J \text{ with } (a,b)^v = D \} \). Then set \(I_0 = I \), \(I_n = (I_{n-1})' \) for \(n > 0 \), and \(I^F = \bigcup_{k=0}^{\infty} I_k \). It was observed in [16] that this defines a finite-type star operation on \(D \) (but most of the necessary details were already present in [3]).

Observe that the \(t_2 \)- and \(F \)-operations are similar to the \(t \)- and \(w \)-operations, the differences being that finite subsets are replaced by two-element subsets and iteration is required. Clearly, we have \(F \leq t_2 \), \(F \leq w \), and \(t_2 \leq t \). In [16], an example was given showing that it is possible to have \(F < t_2 \); in fact, in that example, it is easy to see that we have \(d = F = w < t_2 \). In Example 5.1 below, we show that it is possible to have \(F < w \) and \(t_2 < t \), answering questions posed in [16].

Although the \(t_2 \)- and \(F \)-operations are defined inductively, only one step is needed to determine whether a given ideal is a \(t_2 \)- or \(F \)-ideal.

Lemma 1.2. Let \(I \) be a nonzero ideal of a domain \(D \). Then the following statements hold.

1. \(I \) is a \(t_2 \)-ideal if \((a,b)^v \subseteq I \) whenever \(a, b \in I \).

2. \(I \) is an \(F \)-ideal if \(x \in I \) whenever \(x(a,b) \subseteq I \) with \(x, a, b \in D \) and \((a,b)^v = D \).

3. \(I \) is a prime \(F \)-ideal (\(F \)-prime) if \(I \) does not contain any pair of \(v \)-coprime elements.

Proof. Statements (1) and (2) follow easily from the definitions. For (3), suppose that \(I \) is as hypothesized and that \(x(a,b) \subseteq I \) with \((a,b)^v = D \). Then, \((a,b) \notin I \), so that we must have \(x \in I \). Hence \(I \) is an \(F \)-ideal by (2). \(\square \)

As has already been mentioned, for any star operation \(\ast \) on \(D \), we may define \(\ast_w \) by \(I^{\ast_w} = \bigcup \{(I : J) : J \text{ is a finitely generated subideal of } I \text{ and } J^* = D \} \), and we have \(v_w = t_w = w \).

Proposition 1.3. For any domain \(D \), the \(F \)- and \(F_w \)-operations on \(D \) are identical.

Proof. Since \(F_w \leq F \) by definition, it suffices to show that each \(F_w \)-ideal is also an \(F \)-ideal. Accordingly, let \(I \) be an \(F_w \)-ideal of \(D \), and suppose that \(x, a, b \in D \) are such that \((a,b)^v = D \) and \(x(a,b) \subseteq I \). Since \(1(a,b) \subseteq (a,b) \) and \((a,b)^v = D \), we have \((a,b)^F = D \) and hence \(x \in I^{F_w} = I \). The result now follows from Lemma 1.2. \(\square \)
For any ∗-operation on \(D \), it is known that if \(P \) is a \(w \)-prime of \(D \), then every prime ideal contained in \(P \) is also a \(w \)-prime. Hence we have the following:

Corollary 1.4. If \(P \) is an \(F \)-prime of \(D \), then so is every nonzero prime of \(D \) contained in \(P \) .

Questions 1.5. Let \(D \) be a domain.

1. Must we have \(F\text{-Max}(D) \subseteq t_2\text{-Max}(D) \)?
2. Must we have \(F\text{-Max}(D) = t_2\text{-Max}(D) \)?
3. If \(I \) is an ideal of \(D \) with \(I^{t_2} = D \), do we necessarily have \(I^F = D \)?
4. Do we have \(t_2\text{-Max}(D) \subseteq F\text{-Max}(D) \)?
5. What conditions on \(D \) ensure \(t_2 = t \)?
6. In general, we have \(F = F_w \leq (t_2)_w \leq w \). When do we have \(F = (t_2)_w \) or \((t_2)_w = w \) ?

It is not difficult to show that Questions (1)-(3) are equivalent:

Lemma 1.6. Suppose that \(*_1 \leq *_2 \) are finite-type star operations on \(D \). Then the following statements are equivalent.

1. \(*_1\text{-Max}(D) \subseteq *_2\text{-Max}(D) \).
2. \(*_1\text{-Max}(D) = *_2\text{-Max}(D) \).
3. If \(I \) is an ideal of \(D \) with \(I^{*_2} = D \), then \(I^{*_1} = D \).

Proof. Assume (1), and let \(M \in *_2\text{-Max}(D) \). Since \(*_1 \leq *_2 \), we have \(M^{*_1} \neq D \). Hence \(M \) is contained in a maximal \(*_1 \)-ideal \(N \) of \(D \). However, by assumption, this yields \(N \in *_2\text{-Max}(D) \), and we must therefore have \(M = N \), that is, \(M \in *_1\text{-Max}(D) \). Thus (1) \(\Rightarrow \) (2). Assume (2), and let \(I \) satisfy \(I^{*_1} \neq D \). Then \(I \subseteq M \) for some \(M \in *_1\text{-Max}(D) = *_2\text{-Max}(D) \), and we have \(I^{*_2} \subseteq M \not\subseteq D \). Hence (2) \(\Rightarrow \) (3). Finally, assume (3), and let \(M \in *_1\text{-Max}(D) \). Then \(M^{*_1} \neq D \), whence, by assumption, \(M^{*_2} \neq D \). Since \(M^{*_2} \) is a \(*_1 \)-ideal and \(M \subseteq M^{*_2} \), this yields \(M = M^{*_2} \). Thus \(M \) is a \(*_2 \)-ideal. Since every \(*_2 \)-ideal is also a \(*_1 \)-ideal, \(M \) cannot be contained in a larger \(*_2 \)-ideal, i.e., \(M \in *_2\text{-Max}(D) \).

Recall that if \(* \) is a star operation on \(D \), then we say that \(D \) has finite \(* \)-character if each nonzero element of \(D \) is contained in only finitely many maximal \(* \)-ideals of \(D \). (When \(* = d \), one says that \(D \) has finite character.)

Proposition 1.7. If \(D \) has finite \(t_2 \)-character, then \(t_2\text{-Max}(D) = F\text{-Max}(D) \).

Proof. Suppose that \(D \) has finite \(t_2 \)-character, and let \(M \in F\text{-Max}(D) \). If \(M \) is not a \(t_2 \)-ideal, then, since every \(t_2 \)-ideal is a \(F \)-ideal, we have \(M^{t_2} = D \). Choose a nonzero element \(a \in M \). Then \(a \) is in only finitely many maximal \(t_2 \)-ideals, and, since \(M^{t_2} = D \), we may use prime avoidance to find \(b \in M \) with \((a, b) \) in no maximal \(t_2 \)-ideal, that is, \((a, b)^{t_2} = D \). However, this yields \((a, b)^v = D \), contradicting that \(M \) is a maximal \(F \)-ideal. Thus \(M \) must be a \(t_2 \)-ideal and hence a maximal \(t_2 \)-ideal. The result now follows from Lemma 1.6.

Proposition 1.8. If \(D \) has finite \(t \)-character, then \(t\text{-Max}(D) = t_2\text{-Max}(D) = F\text{-Max}(D) = w\text{-Max}(D) \). In particular, finite \(t \)-character implies both finite \(t_2 \)- and finite \(F \)-character.

Proof. Assume that \(D \) has finite \(t \)-character, and let \(M \) be a maximal \(t_2 \)-ideal of \(D \). If \(M \) is not a \(t \)-ideal, then \(M^t = D \), and, as in the proof of Proposition 1.7, we
can find $a, b \in M$ with (a, b) in no maximal t-ideal of D. But then $(a, b)^v = D$, a contradiction. Hence t-$\text{Max}(D) = t_2$-$\text{Max}(D)$, and D also has finite t_2-character. A similar conclusion for maximal F-ideals now follows from Proposition 1.7. Finally, it is well know that t-$\text{Max}(D) = \omega$-$\text{Max}(D)$ in general ([5, Theorem 2.16]). □

It follows from Proposition 1.7 that finite t_2-character implies finite F-character. However, it does not imply finite t-character — see Proposition 5.2 below.

In [22] the authors introduced the class of TV-domains, domains in which the t-operation coincides with the v-operation. By [22, Theorem 1.3], TV-domains have finite t-character, so that Proposition 1.8 applies to this class of domains. Now recall that a domain is a Mori domain if it satisfies the ascending chain condition on divisorial ideals. It was observed in [22] that the class of TV-domains includes (but is properly larger than) the class of Mori domains. In particular, Proposition 1.8 applies to Noetherian domains. Actually, for Mori domains, we can say a good deal more:

Proposition 1.9. Let D be a Mori domain. Then every t_2-prime of D is a t-prime.

Proof. Let P be a t_2-prime of D, and let a be a nonzero element of P. By [19, Theorem 2.1], a is contained in only finitely many t-primes of D. Use prime avoidance to choose $b \in P$ with b in no t-prime Q of D for which $a \in Q$ and $Q \subseteq P$. Since P is a t_2-prime, $(a, b)^v \subseteq P$. Shrink P to a prime P_0 minimal over $(a, b)^v$. Then P_0 is a t-prime, and by construction we must have $P = P_0$. □

We suspect that Questions (1) - (4) above have negative answers in general. With respect to Question 5, we do not even know whether $t_2 < t$ in a one-dimensional local Noetherian domain. (We do know from Proposition 5.2 below that $t_2 < t$ can occur (albeit in a domain that is far from being Noetherian).)

2. DF-domains

We begin this section with several characterizations of DF-domains. We recall the definition: The domain D is a DF-domain if for $a, b \in D$ with $(a, b)^v = D$, we have $(a, b) = D$. Now recall from [7] that an overring E of a domain D is t-linked over D if $(E : I_E) = E$ whenever I is a finitely generated ideal of D with $I^{-1} = D$, equivalently, if $(J E)^{v_E} = E$ whenever J is an ideal of D with $J^d = D$. It was shown that every overring of D is t-linked over D if and only if every maximal ideal of D is a t-ideal, i.e., if and only if D is a DW-domain. In [9] the notion of t-linkedness was extended as follows. Given D and an overring E and star operations $*$ on D and $*1$ on E, E is $(*, *1)$-linked over D if $(J E)^{*1} = E$ whenever J is an ideal of D with $J^* = D$.

Theorem 2.1. The following statements are equivalent for a domain D.

1. D is a DF-domain.
2. $a, b \in D$ with $(a, b)^v = (d)$ implies $(a, b) = (d)$.
3. $a, b \in D$ with $(a, b)^v$ principal implies (a, b) principal.
4. Each nonzero ideal of D is an F-ideal; equivalently, the d- and F-operations on D are identical.
5. Each maximal ideal of D is an F-prime.
6. For every overring E of D, E is (F, F_E)-linked over D.
Proof. (1) ⇒ (2): Let D be a DF-domain, and let $a, b \in D$ with $(a, b)^v = dD$ for some $d \in D$. Then $(a/d, b/d)^v = (1/d)(a, b)^v = D$. Since D is a DF-domain, this yields $(a/d, b/d) = D$ and, therefore, $(a, b) = dD$.

(2) ⇒ (3): Trivial.

(3) ⇒ (4): Assume (3). Let I be a nonzero ideal of D, and suppose that $x(a, b) \subseteq I$ with $(a, b)^v = D$. By (3) $(a, b) = (c)$ for some $c \in D$. Hence $D = (a, b)^v = (c) = (a, b)$, and we have $x \in I$. Therefore, $IF = I$.

(4) ⇒ (5): Trivial.

(5) ⇒ (6): Assume (5), let E be an overring of D, and let I be an ideal of D with $IF = D$. If $(IE)^{Fr} \neq E$, then IE is contained in a maximal F-ideal Q of E. Let M be a maximal ideal of D containing $Q \cap D$. Then M is an F-prime. However, $IF = D$ and $I \subseteq M$, a contradiction.

(6) ⇒ (1): Assume (6), and let $a, b \in D$ with $(a, b)^v = D$. Then $(a, b)^F = D$ also. Suppose, by way of contradiction, that (a, b) is a proper ideal of D, and let M be a maximal ideal containing (a, b). Then there is a valuation overring V of D whose maximal ideal N satisfies $N \cap D = M$. By assumption, we have $((a, b)V)^{Fr} = V$. However, every ideal of V is a t-ideal and hence also an F_V-ideal, and this yields $((a, b)V)^{Fr} = (a, b)V \subseteq N$, a contradiction. □

Since $F \subseteq w$ for all domains, the following is immediate.

Corollary 2.2. A DW-domain is a DF-domain. □

We consider another property stronger than DF. Recall that in [6] Cohn defined a pre-Bézout domain to be a domain D satisfying the following property: $a, b \in D$ with $\gcd(a, b) = 1$ implies $(a, b) = D$. We list a few equivalent conditions:

Lemma 2.3. The following statements are equivalent for a domain D.

1. $(a, b) \in D$ with $\gcd(a, b) = d$ implies (a, b) principal.
2. $(a, b) \in D$ with $\gcd(a, b) = d$ implies $(a, b) = (d)$.
3. D is a pre-Bézout domain.
4. Each proper 2-generated ideal of D is contained in a proper principal ideal.

Proof. Assume (1), and let $a, b \in D$ with $\gcd(a, b) = d$. Then (a, b) is principal, say $(a, b) = (c)$. Since $c | a$ and $c | b$, we have $(d) \subseteq (c)$. On the other hand, $(c) = (a, b) \subseteq (d)$. Hence (1) ⇒ (2). That (2) ⇒ (3) is trivial. Assume (3), and let $a, b \in D$ be such that (a, b) is contained in no proper principal ideal. Then $\gcd(a, b) = 1$, and we have $(a, b) = D$ (i.e., (a, b) is not a proper ideal) by (3). Thus (3) ⇒ (4). Finally, assume (4), and let $a, b \in D$ with $\gcd(a, b) = d$. A standard argument yields $\gcd(a/d, b/d) = 1$, so that $(a/d, b/d)$ is not contained in a proper principal ideal. Thus $(a/d, b/d) = D$ by (4) and hence $(a, b) = (d)$. □

Now suppose that D is pre-Bézout, and let $a, b \in D$ with $(a, b)^v = D$. Then, as we have already observed, $\gcd(a, b)$ exists and is equal to 1 and hence $(a, b) = D$. This yields:

Corollary 2.4. A pre-Bézout domain is a DF-domain. □

The converse of Corollary 2.4 is false. Let $L \subseteq k$ be fields, X a set of indeterminates over k with $|X| \geq 2$, M the maximal ideal of $k[X]$ generated by X, and $D = L + Mk[X]_M$. It is well known that D is then a local domain whose maximal ideal is divisorial and hence a t-ideal. Since DW-domains are characterized as domains each of whose maximal ideals is a t-ideal ([26, Proposition 2.2] and [7,
Lemma 2.1), D is a DW-domain and hence a DF-domain. However, for $x \neq y \in X$, we have \(\gcd(x,y) = 1 \), but \((x,y) \subseteq D \).

In fact, we can characterize pre-Bézout domains among DF-domains. In \cite{28} the authors call a domain D a GCD-Bézout domain if \((a_1, a_2, \ldots, a_n) \) is principal whenever a_1, \ldots, a_n are elements of D with a greatest common divisor, and they show that a GCD-Bézout domain is a DW-domain. Indeed, in \cite[Corollary 2.12]{28}, they characterize GCD-Bézout domains as DW-domains that satisfy the PSP-property of Arnold-Sheldon \cite{2}. A domain D satisfies PSP (for primitive implies superprimitive) if for each finitely generated ideal I that is not contained in a proper principal ideal we have $I^v = D$. (This terminology arises as follows: an element $f \in D[X]$ is called primitive (resp. superprimitive) if $c(f)$, the ideal of D generated by the coefficients of f, is not contained in a proper principal ideal of D (resp., satisfies $c(f)^v = D$).) Following \cite{27}, let us say that a domain satisfies LPSP–for linear PSP–if each two-generated ideal I not contained in a proper principal ideal satisfies $I^v = D$ (that is, if each primitive linear polynomial is superprimitive). Then we have the following:

Proposition 2.5. A domain D is pre-Bézout if and only if it is a DF-domain with LPSP.

Proof. Suppose that D is pre-Bézout. Then D is a DF-domain by Corollary 2.4. Also, for $a, b \in D$ with (a, b) not contained in a proper principal ideal, we have $\gcd(a, b) = 1$, whence $(a, b) = D$ and then $(a, b)^v = D$. Therefore, D also satisfies LPSP. Now suppose that D is DF and satisfies LPSP, and let $a, b \in D$ with $\gcd(a, b) = 1$. Then (a, b) cannot be contained in a proper principal ideal, whence $(a, b)^v = D$ by LPSP. Since D is a DF-domain, we then have $(a, b) = D$. Therefore, D is pre-Bézout. \(\square \)

We don’t know whether a pre-Bézout domain must be GCD-Bézout (but we doubt it). However:

Proposition 2.6. A local pre-Bézout domain is GCD-Bézout.

Proof. Let (D, M) be a local pre-Bézout domain. Then each proper 2-generated ideal of D is contained in a proper principal ideal by Lemma 2.3. We show that (in the local case) this extends to all finitely generated ideals. Thus let (a_1, \ldots, a_n), $n > 2$, be a proper finitely generated ideal. By induction, we may assume that $(a_1, \ldots, a_{n-1}) \subseteq (b)$ for some $b \in M$. We also have $(a_n, b) \subseteq (c)$ for some $c \in M$, and hence $(a_1, \ldots, a_n) \subseteq (c) \subseteq M$, as desired. By \cite[Proposition 2.6]{28}, D is a GCD-Bézout domain. \(\square \)

We next consider what happens when the DF-property is combined with other commonly considered properties.

Proposition 2.7. A DF-domain of finite t-character is a DW-domain.

Proof. Let D be a DF-domain of finite t-character, and let M be a maximal ideal of D. Then M is a maximal F-ideal and hence a maximal t-ideal by Proposition 1.8. Thus each maximal ideal of D is a maximal t-ideal, whence D is a DW-domain. \(\square \)

In particular, the DF- and DW-properties coincide for Noetherian domains. Noetherian DW-domains of arbitrary dimension (including ∞) exist—see \cite[Examples 2.1 and 2.7]{21}.
Let * be a star operation on a domain D. Then the *-dimension of D is the length of a longest chain of *-primes in D (where, for the purposes of this definition, (0) is counted as a *-prime). The next two results strengthen [26, Corollary 2.3].

Proposition 2.8. Let D have F-dimension one. Then the following statements are equivalent.

1. dim(D) = 1.
2. D is a DW-domain.
3. D is a DF-domain.

Proof. Since height-one primes are t-primes, we obtain (1) \Rightarrow (2) immediately, and (2) \Rightarrow (3) is easy (Corollary 2.2). Assume (3). Then, since each maximal ideal of D is an F-prime and primes within an F-prime are F-primes by Corollary 1.4, D must have dimension one. □

Observe that if D has finite t-character, then the t- and F-dimensions are the same by Proposition 1.8. It is well known that a Krull domain is a Dedekind domain if and only if it has dimension one. Then, since a Krull domain has finite t-character and has t-dimension one, we obtain:

Corollary 2.9. Let D be a Krull domain. Then the following statements are equivalent.

1. D is a DW-domain.
2. D is a DF-domain.
3. D is a Dedekind domain.

□

Since a Dedekind domain is a PID if and only if it is a UFD, we have:

Corollary 2.10. Let D be a UFD. The following statements are equivalent.

1. D is a DW-domain.
2. D is a DF-domain.
3. D is a PID.

□

We next give a direct proof of a result of Mott and the second author [27, Corollary 6.6]. Recall that a domain D is atomic if each nonzero, nonunit of D factors as a product of atoms (irreducible elements).

Corollary 2.11. An atomic pre-Bézout domain is a PID.

Proof. Let D be an atomic pre-Bézout domain. By Corollary 2.10 it suffices to show that D is a UFD, and for this it suffices to show that each atom is prime. Thus let a be an atom, and suppose that $a \mid bc$ for some $b, c \in D$. If (a, b) is not contained in a proper principal ideal, then by assumption, we may write $1 = ar + bs$ with $r, s \in D$; multiplication by c then yields that $a \mid c$. Suppose that $(a, b) \subseteq (d)$ for some nonunit d. Then $a = dt$, $t \in D$. Since a is an atom, and d is not a unit, t must be a unit. Therefore, since $d \mid b$, we have that $a \mid b$, as desired. □

We have GCD and AGCD versions of Corollary 2.10; the latter strengthens [26, Corollary 2.6]. The other properties will be considered later.
Proposition 2.12. Let D be a GCD-domain (resp., AGCD-domain). Then the following statements are equivalent.

(1) D is a DW-domain.
(2) D is a DF-domain.
(3) D is a Bézout domain (resp., AB-domain).

Proof. We give the proof for the AGCD case; the proof for the GCD case is similar (and easier). That statement (1) implies statement (2) is trivial. Assume statement (2), and let $a, b \in D$. Since D is an AGCD-domain, we have (a^n, b^n) principal for some positive integer n. The DF-assumption then yields that (a^n, b^n) is principal. Hence D is an AB-domain. This gives (2) \Rightarrow (3). Finally, if D is an AB-domain, then D is a DW-domain by [26, Corollary 2.6].

It is clear that a domain D is local if and only if no two nonunits of D are comaximal. Since a local Bézout domain is a valuation domain, we have the following.

Corollary 2.13. A domain D is a valuation domain if and only if it is simultaneously a GCD-domain and a DF-domain in which no two nonunits of D are comaximal.

Recall that a Prüfer v-multiplication domain (PVMD) may be characterized as a domain D for which D_M is a valuation domain for each maximal t-ideal M of D. Examples of PVMDs include Prüfer, Krull, and GCD-domains. It is easy to see that a PVMD that is also a DW-domain is a Prüfer domain (and this was observed in [29, page 1967]), but we do not know whether a domain that is both a PVMD and a DF-domain must be Prüfer. However, recall that a domain is said to be a ring of Krull type if it is a PVMD of finite t-character [15]. Then by Proposition 2.7 (and the fact that $d = t$ in a Prüfer domain):

Corollary 2.14. The following statements are equivalent for a domain D.

(1) D is of Krull-type and is also a DF-domain
(2) D is of Krull-type and is also a DW-domain.
(3) D is a Prüfer domain of finite character.

3. Localization

In this section, we discuss localization in connection with the DF-property. We begin with some facts about the relation between the F-operation on a domain D and the F-operation on a ring of quotients of D.

Lemma 3.1. Let D be a domain with overring E. Let $*$ (resp., $*_1$) be a star operation on D (resp. E). For each nonzero fractional ideal I of D, set $I^{\delta(*,*_1)} = (IE)^{*_1} \cap I^*$. Then:

(1) $\delta(*,*_1)$ is a star operation on D, and $\delta(*,*_1) \leq *$.
(2) If $I^* \subseteq (IE)^{*_1}$ for each fractional ideal I of D, then $\delta(*,*_1) = *$; in this case each $*_1$-ideal of E contracts to a $*$-ideal of D.
(3) If S is a multiplicatively closed subset of D, then $\delta(F,F_{DS}) = F$ and hence F-ideals of DS contract to F-ideals of D.

Proof. (1) That $\delta(*,*_1)$ is a star operation on D follows immediately from [4, Theorem 2]. It is clear that $\delta(*,*_1) \leq *$.
(2) If $I^* \subseteq (IE)^*$, then $I^{(\ast, \ast)} = (IE)^* \cap I^* = I^*$. Now let A be a $*_1$-ideal of E. Then, by what was just proved, $(A \cap D)^* = ((A \cap D)E)^* \cap (A \cap D)^* \subseteq A \cap (A \cap D)^* \subseteq A \cap D$.

(3) By (2) we need show only that $I^F \subseteq (ID_S)^F_{DM}$ for each nonzero fractional ideal I of D. Let I be a nonzero fractional ideal of D, and let $x \in D$ be such that $x(a, b) \subseteq I$ for $a, b \in D$ with $(a, b) = D$. By [31, Lemma 4], $(a, b)D_S = D_S$, whence $x \in (ID_S)^F_{DS}$. It follows that $I^F \subseteq (ID_S)^F_{DS}$, as desired. □

In [26, Theorem 2.9] Mimouni showed that a domain D for which D_M is a DF-domain for each maximal ideal M of D is itself DW. We have a similar result for the DF-property.

Proposition 3.2. For a domain D, if D_M is a DF-domain for each maximal ideal M of D, then D is a DF-domain.

Proof. Let M be a maximal ideal of D. Under the assumption that D_M is a DF-domain, we have that MD_M is an F-prime of D_M. By Lemma 3.1 M is an F-prime of D. Therefore, D is a DF-domain if each localization at a maximal ideal is DF. □

The converse of Proposition 3.2 is false. In fact, we next give an example of a DW-domain D with a maximal ideal M such that D_M is not a DF-domain. Note that this answers a question left open by Park and Tartarone [28, page 60].

Example 3.3. In [17] W. Heinzer and J. Ohm present an example of a domain D which is essential ($D = \bigcap D_{P_a}$, where each P_a is a prime ideal of D and D_{P_a} is a valuation domain) but is not a PVMD. As further analyzed in [27] and [12], D has one height-two maximal ideal M, with M being a t-prime and D_M a regular local ring, and all other maximal ideals of D have height one (and are therefore t-primes). (Moreover, D_P is a rank-one discrete valuation domain for each height-one maximal ideal P; we use this fact below.) Thus D is a DW-domain, and hence a DF-domain, but, since MD_M is not an F-prime (since MD_M is 2-generated and satisfies $(MD_M)^{FDM} = D_M$), D_M is not a DF-domain.

As usual, we say that a domain has a given property locally if each localization at a maximal ideal has the property. Thus the example above is locally a PVMD. In fact, it is also locally a UFD (by the “moreover” statement in the example) and hence locally a GCD-domain and locally a Krull domain. The example “works” because MD_M is not an F-ideal. Recall from [32] that a domain D is (conditionally) well behaved if for each prime (maximal) t-ideal P of D, PD_P is a t-prime of D_P. Let us now call D (conditionally) F-well behaved if for each prime (maximal) F-ideal of D, PD_P is an F-prime of D_P. Then the D of the example is neither conditionally well behaved nor conditionally F-well behaved.

It is clear that a Prüfer (resp., almost Prüfer) domain is locally GCD (resp., AGCD). We next find conditions that yield a converse.

Lemma 3.4. Let D be a local domain. Then the following statements are equivalent.

1. D is an APD.
2. D is an AVD.
3. D is an ABD.
4. D is both an AGCD-domain and a DW-domain.
5. D is both an AGCD-domain and a DF-domain.
Proof. The equivalence of (1), (2), and (3) follows from [1, Theorem 5.8]. Statements (3), (4), and (5) are equivalent by Proposition 2.12 (since an ABD is clearly an AGCD-domain). □

Proposition 3.5. The following statements are equivalent for a domain D.

1. D is an APD (resp., Prüfer domain).
2. D is a well-behaved DW-domain that is locally AGCD (resp., locally GCD).
3. D is an F-well-behaved DF-domain that is locally AGCD (resp., locally GCD).

Proof. We give the proof for the “non-parenthetical” result. Let D be an APD, and let M be a maximal ideal of D. By [1, Theorem 5.8], D_M is an AVD and hence an AGCD-domain. In addition, PD_P is a t-prime of D_P for each t-prime P of D by [1, Lemma 5.2], i.e., D is well behaved. Finally, D is DW by [26, Corollary 2.11]. This gives (1) ⇒ (2). Now let D satisfy the conditions in (2), let P be a prime ideal (automatically an F-prime) of D, and let M be a maximal ideal of D containing P. By hypothesis D_M is an AGCD DW-domain and hence an AVD by the lemma. Therefore, D_P, as an overring of D_M, is an AVD, whence PD_P is a t- and hence an F-prime of D_P, as desired. This proves (2) ⇒ (3). Finally, suppose that D is an F-well behaved DF-domain that is also locally an AGCD-domain. If M is a maximal ideal of D, then D_M, being AGCD and DF, is an AVD-domain by the lemma. Hence D is an APD, again by [1, Theorem 5.8]. □

Recall that an almost Dedekind domain is a domain for which each localization at a maximal ideal is a rank-one discrete valuation domain.

Proposition 3.6. The following statements are equivalent for a domain D.

1. D is an almost Dedekind domain.
2. D is a well behaved DW-domain that is also locally a Krull domain.
3. D is an F-well behaved DF-domain that is also locally a Krull domain.

Proof. It is clear that (1) ⇒ (2). Let D be as in (2). Then for each maximal ideal M of D, D_M is DW and Krull and hence, by Corollary 2.9, a Dedekind domain. Thus D is in fact one dimensional, and (3) follows easily. Now let D be as in (3), and let M be a maximal ideal of D. Then D_M is both a DF-domain and a Krull domain and hence a (local) Dedekind domain by Corollary 2.9. Hence D_M is a rank-one discrete valuation domain. Therefore, (3) ⇒ (1). □

Similar arguments (using Corollary 2.14) yield the following result.

Proposition 3.7. A domain D is a Prüfer domain if and only if D is an F-well behaved DF-domain that is locally a ring of Krull type. □

4. Connections with classical grade

As in [25] we call a sequence a_1, \ldots, a_n of D of elements of D an R-sequence if $(a_1, \ldots, a_n) \neq D$ and a_i is not a zero divisor on the module $D/(a_1, \ldots, a_{i-1})$ for $i = 1, \ldots, n$. The classical grade of an ideal I of D, denoted by $G(I)$, is then the length of a longest R-sequence of elements of I. We note that this is “delicate” in the non-Noetherian setting (Kaplansky refrains from defining it there), as Hochster [17] has shown that it is possible for an ideal in a domain to have maximal R-sequences of different lengths.
Now recall Exercises 1 and 2 on page 102 of [25]. According to Exercise 1, if an ideal \(I \) of \(D \) satisfies \(G(I) \geq 2 \), then \(I^{-1} = D \). Exercise 2 then provides a converse in case \(D \) is Noetherian. Note that it follows immediately from Exercise 1 that the first two elements of any \(R \)-sequence in \(D \) are \(v \)-coprime. Now suppose that an ideal \(I \) not only satisfies \(I^{-1} = D \) but actually contains two \(v \)-coprime elements \(a, b \). If \(bc \in (a) \) for some \(c \in D \), then one sees immediately that \(c/a \in (a, b)^{-1} = D \) and hence \(c \in (a) \). Therefore, \(a, b \) is an \(R \)-sequence. We state this formally:

Proposition 4.1. Let \(I \) be a nonzero proper ideal in a domain \(D \). Then \(G(I) \geq 2 \) if and only if \(I \) contains a pair of \(v \)-coprime elements (and this pair is then an \(R \)-sequence). Thus \(G(I) < 2 \) for every ideal \(I \) of an DF-domain. \(\square \)

Corollary 4.2. Let \(I \) be a proper finitely generated ideal of an integral domain \(D \), and suppose that \(I \) contains an element \(a \) which belongs to only finitely many maximal \(t \)-ideals of \(D \). Then \(G(I) \geq 2 \) if and only if \(I^{-1} = D \).

Proof. That \(G(I) \geq 2 \) implies \(I^{-1} = D \) has already been discussed. Assume \(I^{-1} = D \). Pick \(a \in I \) with \(a \) contained in only finitely many maximal \(t \)-ideals of \(D \). Since \(I^{-1} = D \), \(I \) is contained in no maximal \(t \)-ideals of \(D \), and we may use prime avoidance to pick \(b \in I \) with \((a, b) \) contained in no maximal \(t \)-ideal. We then have \((a, b)^{-1} = (a, b)^{-1} = D \), whence \(a, b \) is an \(R \)-sequence by Proposition 4.1. \(\square \)

Corollary 4.3. Let \(D \) be a domain with finite \(t \)-character, and let \(I \) be a proper finitely generated ideal of \(D \). Then \(G(I) \geq 2 \) if and only if \(I^{-1} = D \).

We have the following result, which both generalizes, and provides an easier path to a solution of, Exercise 2 of [25].

Corollary 4.4. If \(I \) is an ideal of a TV-domain \(D \), then \(G(I) \geq 2 \) if and only if \(I^{-1} = D \).

Proof. Let \(I \) be an ideal in the TV-domain \(D \), and assume that \(I^{-1} = D \). Then \(I^t = I^v = D \), and hence \(J^{-1} = J^v = D \) for some finitely generated subideal \(J \) of \(I \). By Corollary 4.3, we then have \(G(I) \geq G(J) \geq 2 \). \(\square \)

We note that the conclusion of Corollary 4.4 is not valid if \(D \) is only assumed to have finite \(t \)-character, for if \(D \) is a valuation domain with nonprincipal maximal ideal \(M \), then \(D \) has finite \((t-) \) character, but \(M^{-1} = D \) and \(G(M) = 1 \).

In Proposition 1.8, we saw that in a domain of finite \(t \)-character, we have \(F-\text{Max}(D) = w-\text{Max}(D) \). In fact, by applying the ideas of this section, we can obtain a stronger conclusion (and thereby generalize [16, Proposition 3.3]):

Corollary 4.5. In a domain \(D \) of finite \(t \)-character, we have \(F = w \).

Proof. Let \(D \) have finite \(t \)-character, and let \(I \) be an \(F \)-ideal of \(D \). Suppose that \(xJ \subseteq I \) for some \(x \in D \) and finitely generated ideal \(J \) with \(J^v = D \). By Corollary 4.3 (and Proposition 4.1), there are elements \(a, b \in J \) with \((a, b)^v = D \). Since \(x(a, b) \subseteq I \) and \(I \) is an \(F \)-ideal, this yields \(x \in I \). Therefore \(I \) is also a \(w \)-ideal, as desired. \(\square \)

5. Examples

In [30, Section 7], H. Uda presents an example showing that classical grade and polynomial grade can differ. We begin with a review of his example and then proceed to adapt it for our purposes. Specifically, we show that an appropriate localization satisfies \(t_2 < t \) and \(F < w \) and is a DF-domain but not a DW-domain.
Except for a slight change in notation, here is Uda’s example:

Example 5.1. Let k be a field and s, t, u indeterminates over k. Then set $A = k[s, t, u]_{(s, t, u)}$, and let P denote the maximal ideal of A. For each $\alpha, \beta \in P$, let $X_{\alpha \beta}$ be an indeterminate, and let $T = A[[X_{\alpha \beta}]]$. Let B denote the ideal of T generated by the $X_{\alpha \beta}$, and let $J = B^2$. Let $N = PT + B$, so that N is a maximal ideal of T, generated by s, t, u and the $X_{\alpha \beta}$. Now for each $\alpha, \beta \in P$, let $P_{\alpha \beta} = (\alpha, \beta)A$, and let $R = A + \sum P_{\alpha \beta} X_{\alpha \beta} + J$. Let $M = N \cap R$. Each $f \in R$ has a unique representation $f = f_0 + \sum f_{\alpha \beta} X_{\alpha \beta} + f_1$ with $f_0 \in A$, $f_{\alpha \beta} \in P_{\alpha \beta}$, and $f_1 \in J$.

Proposition 5.2. In Example 5.1:

1. T is integral over R.
2. M is a maximal ideal of R and a maximal t_2-ideal.
3. $(PR)^t = R$, hence M is not a t-ideal.
4. $T^t R_M = T_N$.
5. R_M is not integrally closed.
6. MR_M is a t_2-ideal but not a w-ideal of R_M. Hence in $D := R_M$, $t_2 < t$ and $F < w$.
7. D is a DF-domain but not a DW-domain.
8. D is not a pre-Bézout domain.
9. D does not have finite t-character. (Of course, since D is local with maximal ideal a t_2-ideal, D does have finite t_2-character.)

Proof.

1. This follows from the fact that $A \subseteq R$ and $X_{\alpha \beta}^2 \in R$ for each α, β.
2. By (1) M is a maximal ideal of R. Let $f, g \in M$. Write $f = f_0 + \sum f_{\alpha \beta} X_{\alpha \beta} + f_1$ and $g = g_0 + \sum g_{\alpha \beta} X_{\alpha \beta} + g_1$ with $f_0, g_0 \in P$, $f_{\alpha \beta} \in P_{\alpha \beta}$, and $f_1, g_1 \in J$. Then $X_{f_0 g_0} (f, g) R \subseteq R$, and we have $(f, g)^w \subseteq (R :_R X_{f_0 g_0}) \subseteq M$ ([30, Lemma 7.1]).
3. It follows from [30, Proposition 7.3] that $(s, t, u) R^w = R$.
4. Let $f \in T \setminus N$, and write $f = a + g$ with $a \in A$ and $g \in (\{X_{\alpha \beta}\}) R$. Then $f^{-1} = (a - g)/(a^2 - g^2)$ with $a^2 - g^2 \in R \setminus M$.
5. We have $X_{\alpha \beta} \in T \setminus R_M$ for each $\alpha, \beta \in P$.
6. For $f, g \in M$, represent f, g as in (2). Then $X_{f_0 g_0} (f, g) R \subseteq R_M$ with $X_{f_0 g_0} \notin R_M$. It follows that $((f, g) R_M)^w R_M \subseteq MR_M$ and hence that MR_M is a t_2-ideal. On the other hand, M is not a w-ideal by (3) (since every maximal w-ideal is a maximal t-ideal); hence MR_M is not a w-ideal.
7. Since MR_M is a t_2-ideal, it is also an F-ideal. Therefore, D is a DF-domain. On the other hand, D is not a DW-domain, since MR_M is not a t-ideal.
8. It is clear that s, t are not contained in a proper principal ideal of T_N. Hence $(s, t) D$ is not contained in a proper principal ideal of D, i.e., $(s, t) D$ is primitive. Of course, $(s, t) D$ is not superprimitive and hence D does not have LPSP. Thus D is not pre-Bézout by Proposition 2.5.
9. Since D is not a DW-domain, D cannot have finite t-character by Proposition 2.7.

□

Remarks/Questions 5.3. Refer to Proposition 5.2.

1. By (5), D is not integrally closed. Must an integrally closed DF-domain be DW? We doubt that this is true but have no counterexample.
(2) Picozza and Tartarone [29, Theorem 3.7] prove that a DW-domain that is both integrally closed and satisfies the finite-conductor property must be a Prüfer domain. (A domain E is a finite conductor domain if $(a) \cap (b)$ is finitely generated for all $a, b \in E$.) The proof involves two steps: an integrally closed finite conductor domain is a PVMD, and a PVMD that is also a DW-domain must be a Prüfer domain. As we have already remarked, we do not know whether a DF-PVMD must be Prüfer (but we doubt it).

(3) It is clear that $\dim(D) = \infty$: Every one-dimensional domain is a DW-domain. Are there two-dimensional, or at least finite-dimensional, examples of DF-domains that are not DW?

(4) As mentioned in [16], if $n > 2$ and one substitutes n-generated ideals for two-generated ideals in the definitions of the t_2- and F-operations, one obtains new star operations, dubbed the t_n- and F_n-operations (so that $F_2 = F$). Whether we always have $t_n = t$ or $F_n = w$ were left as open questions. However, by making obvious changes in Example 5.1, one can obtain, for each $n > 1$ a local domain D_n whose maximal ideal is a t_n- (and hence also an F_n-) ideal but is not an F_{n+1}-ideal.

In order to produce more examples of DF-domains that are not DW, we investigate the DF-property in pullback diagrams. Though our results generally parallel those of Mimouni for DW-domains [26], our proofs are somewhat more delicate due to the fact that ideals often must be two-generated. We need several facts about the behavior of ν-ideals, etc., in pullbacks. For this we use [11] as a convenient reference, but the ideas actually come from [10].

Let T be a domain, M a maximal ideal of T, $\varphi : T \rightarrow k := T/M$ the natural projection, and D an integral domain contained in k. Then let $D = \varphi^{-1}(D)$ be the integral domain arising from the following pullback of canonical homomorphisms.

$$
\begin{array}{ccc}
R & \longrightarrow & D \\
\downarrow & & \downarrow \\
T & \varphi \longrightarrow & T/M = k
\end{array}
$$

We shall refer to this as a diagram of type \square.

Proposition 5.5 below allows one to produce many examples of DF-domains.

Lemma 5.4. In a pullback of type \square:

(1) If A is a F-ideal of D, then $\varphi^{-1}(A)$ is a F-ideal of R.

(2) For each nonzero ideal A of D, $\varphi^{-1}(A^F) = \varphi^{-1}(A)^F$.

(3) If Q is a maximal F-ideal of T, then $Q \cap R$ is a maximal F-ideal of R.

Proof. (1) Let A be a F-ideal of D, and let $I = \varphi^{-1}(A)$. Suppose $r(a, b) \subseteq I$, with $r, a, b \in R$ and $(a, b)^\nu = R$. By [11, Proposition 2.17(2b)], $(\varphi(a), \varphi(b))^{\nu_{\varphi}} = D$. Since A is a F-ideal of D, this yields $\varphi(r) \in A$ and hence $r \in I$. Thus I is a F-ideal of R.

(2) Let A be a nonzero ideal of D. By (1), we have $\varphi^{-1}(A^F) \supseteq \varphi^{-1}(A)^F$. We now recall the notation of Definition 1.1: For a domain E with quotient field L and a subset J of L, we write $J' = \{ y \in L \mid y(e, f) \subseteq J \text{ for some } e, f \in E \text{ with } (e, f)^{n_{\varphi}} = E \}$. To complete the proof, it will suffice to show that $\varphi^{-1}(A') \supseteq \varphi^{-1}(A)^'$. To this end, let $x \in \varphi^{-1}(A')$. Then $\varphi(x)(d_1, d_2) \subseteq A$ for elements $d_1, d_2 \in D$ with
(d_1, d_2)^{\nu_0} = D. According to [20, Lemma 7 and its proof], there are elements r_1, r_2 in R for which \(\varphi(r_i) = d_i \) for \(i = 1, 2 \) and \(\varphi^{-1}(d_1, d_2) = (r_1, r_2) \). By [11, Proposition 2.17(1b)], we have \(R = \varphi^{-1}((d_1, d_2)^{\nu_0}) = (r_1, r_2)^{\nu} \). Since \(x(r_1, r_2) \subseteq \varphi^{-1}(A) \), we have \(x \in \varphi^{-1}(A)' \), as desired.

(3) Let \(Q \) be a maximal \(F \)-ideal of \(T \), and let \(P = Q \cap R \). Suppose that \(P \) is not an \(F \)-prime of \(R \). Then there are elements \(a, b \in P \) for which \((a, b)^{\nu} = R \). Note that we cannot have \((a, b) \in M \) since \(M \) is divisorial in \(R \). Hence \((a, b)T)^{\nu_T} = T \) by [11, Proposition 2.5(2)], contradicting that \(Q \) is an \(F \)-prime of \(T \).

Proposition 5.5. In a pullback of type \(\square \):

1. If \(T, D \) are \(DF \)-domains, then \(R \) is a \(DF \)-domain.
2. If \(T \) is local and \(D \) is a \(DF \)-domain, then \(R \) is a \(DF \)-domain.
3. If \(R \) is a \(DF \)-domain, then \(D \) is a \(DF \)-domain.

Proof. (1) Let \(P \) be a maximal ideal of \(R \). If \(P \supseteq M \), then \(P = \varphi^{-1}(p) \) for a maximal ideal \(p \) of \(D \) [11, Theorem 1.9]. Since \(D \) is a \(DF \)-domain, \(p \) is an \(F \)-prime of \(D \) and hence \(P \) is an \(F \)-prime of \(R \) by Lemma 5.4. If \(P = M \), then \(P \) is divisorial (and therefore an \(F \)-prime). If \(P \) is incomparable to \(M \), then \(P = Q \cap T \) for some maximal ideal \(Q \) of \(T \) [11, Theorem 1.9]. Since \(T \) is a \(DF \)-domain, \(Q \) is an \(F \)-prime and hence so is \(P \) by Lemma 5.4.

(2) This follows as in the proof of (1).

(3) Assume that \(R \) is \(DF \), and let \(p \) be a maximal ideal of \(D \). Then \(P := \varphi^{-1}(p) \) is a maximal ideal of \(R \), and, since \(R \) is a \(DF \)-domain, \(P \) is an \(F \)-prime of \(R \). By Lemma 5.4 \(P = P^F = \varphi^{-1}(p^F) \), whence \(p = p^F \), that is, \(p \) is an \(F \)-prime of \(D \). □

According to [26, Theorem 3.1(1)], in a pullback diagram of type \((\square) \), if \(R \) is \(DW \), then so is \(D \). Hence if we take \(D \) to be a \(DF \)-domain that is not \(DW \) (e.g., the \(D \) of Proposition 5.2) and \(T \) is either local or a \(DF \)-domain, then \(R \) is a \(DF \)-domain that is not \(DW \).

6. Polynomial rings

Proposition 6.1. Let \(D \) be a domain, and \(Q \) a maximal \(t_2 \)-ideal of \(D[X] \). Then \(Q \) is a maximal \(t \)-ideal of \(D[X] \). Hence \(Q \) is either an upper to zero or the extension of a maximal \(t \)-ideal of \(D \). Moreover, \(t\text{-Max}(D[X]) = t_2\text{-Max}(D[X]) = w\text{-Max}(D[X]) = F\text{-Max}(D[X]) \).

Proof. If \(Q \) is an upper to zero, then \(Q \) is a \(t \)-ideal and must therefore be a maximal \(t \)-ideal. Hence we assume that \(Q = Q \cap D \neq (0) \). Suppose, by way of contradiction, that \(Q^t = D[X] \). Then we have \(f_1, \ldots, f_n \in Q \) with \((f_1, \ldots, f_n) = D[X] \), and it is clear that we must then have \((c(f_1) + \cdots + c(f_n))^{-1} = D \). By a standard argument, we can then produce \(f \in Q \) with \(c(f) = c(f_1) + \cdots + c(f_n) \) (take \(f = f_1 + X^{k_2}f_2 + \cdots + X^{k_n}f_n \) for appropriately chosen positive integers \(k_2, \ldots, k_n \)), so that \((c(f))^r = D \). Pick \(a \in P \), \(a \neq 0 \). We claim that \((a, f)^r = D[X] \). (This is a another standard argument: suppose that \(g \in (a, f)^{-1} \). Since \(ga \in D[X] \), this puts \(g \in K[X] \). We then use the content formula to get \(c(f)^{r+1}c(g) = c(f)^rc(fg) \subseteq D \) for appropriately chosen \(r \) [13, Theorem 28.1]. Since \(c(f)^r = D \), this yields \(g \in D[X] \). Hence \((a, f)^r = (a, f)^{-1} = D[X] \), as claimed.) However, this contradicts the fact that \(Q \) is a \(t_2 \)-ideal. Hence \(Q^t \neq D[X] \). It follows that \(Q \) must be a maximal \(t \)-ideal of \(D[X] \). The “hence” statement now follows from [22, Proposition 1.1]. As to
the “moreover” statement, we have \(w \)-\(\text{Max}(E) = t \)-\(\text{Max}(E) \) for all domains \(E \) and \(w = F \) on \(D[X] \) [16, Theorem 4.5].

The following corollary strengthens [26, Proposition 2.12].

Corollary 6.2. For a domain \(D \), \(D[X] \) is a DF-domain if and only if \(D \) is a field.

Proof. Suppose that \(D \) is not a field, and let \(M \) be a maximal ideal of \(D \). Then \((M, X) \) is a maximal ideal of \(D[X] \) that is not a \(t \)-ideal, hence not a \(F \)-ideal. Thus \(D \) is not a DF-domain. The converse is trivial. \(\square \)

For a prime ideal \(I \) of a domain \(D \), it is well known that \(I \) is a \(t \)-ideal of \(D \) if and only if \(I[X] \) is a \(t \)-ideal of \(D[X] \). This does not hold, however, for \(F \) or \(t_2 \)-ideals, as the next example shows.

Example 6.3. In Proposition 5.2, \(M[X] \) is not an \(F \)-ideal of \(D[X] \).

Proof. If \(M[X] \) is a \(F \)-ideal of \(D[X] \), then it must be a maximal \(F \)-ideal. (The only primes containing \(M[X] \) are of the form \((M, f)\) with \(f \) monic. Then for any nonzero \(a \in M \), we have \((a, f)^c = D[X]\), so that \((M, f)\) is not an \(F \)-ideal.) However, by Proposition 6.1, this means that \(M \) is a \((\text{maximal})\) \(t \)-ideal of \(D \), a contradiction. \(\square \)

We remark that, although we always have \(F = w \) in \(D[X] \) [16, Theorem 4.5], we do not know whether a \(t_2 \)-prime of \(D[X] \) must be a \(t \)-ideal. (See [16] for some cases where the answer is yes.)

In [24] Kang extended the notion of the Nagata ring as follows. For a star operation \(* \) on \(D \), let \(N_e = \{ g \in D[X] \mid c(g)^* = D \} \) (where \(c(g) \) denotes the content of \(g \), i.e., the ideal of \(D \) generated by the coefficients of \(g \)). The \(* \)-Nagata ring is then \(D[X]_{N_e} \). When \(* = d \), we have the classical Nagata ring, usually denoted by \(D(X) \). In [29], the authors observe that \(D[X]_{N_e} \) is always a DW-domain, and they prove that a domain \(D \) is DW if and only if \(D(X) \) is DW if and only if \(D(X) = D[X]_{N_e} \). This leads to the question: When is \(D[X]_{N_F} \) a DF-domain? We answer this question in the next result. We shall use the fact that the maximal ideals of \(D[X]_{N_e} \) are the ideals \(MD[X]_{N_e} \), where \(M \) is a maximal \(*_f \)-ideal of \(D \) [24, Proposition 2.1].

Proposition 6.4. The following statements are equivalent for a domain \(D \).

1. \(D[X]_{N_F} \) is a DF-domain.
2. \(D[X]_{N_F} = D[X]_{N_Y} \).
3. \(D[X]_{N_F} \) is a DW-domain.

Proof. Suppose that \(D[X]_{N_F} \) is a DF-domain. Then each maximal ideal of \(D[X]_{N_F} \) is an \(F \)-prime, and, using the fact that the \(F \)-operation has finite type and the above-mentioned description of \(\text{Max}(D[X]_{N_F}) \), we have that \(MD[X]_{N_F} \) is an \(F \)-prime of \(D[X]_{N_F} \) for each maximal \(F \)-ideal \(M \) of \(D \). If follows that \(MD[X] \) is an \(F \)-prime, and hence, by Proposition 6.1, a \(t \)-prime of \(D[X] \) for each such \(M \). Therefore, each maximal \(F \)-ideal of \(D \) is in fact a maximal \(t \)-ideal, and this yields that \(D[X]_{N_F} = D[X]_{N_Y} \). Hence (1) \(\Rightarrow \) (2). It is clear that (2) \(\Rightarrow \) (3) \(\Rightarrow \) (1). \(\square \)

References

WHEN ANY TWO v-COPRIME ELEMENTS ARE COMAXIMAL

[26] A. Mimouni, Integral domains in which every ideal is a w-ideal, Comm. Algebra 33 (2005), 1345-1355.

Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC 28223 U.S.A.
E-mail address: eghousto@uncc.edu

Department of Mathematics, Idaho State University, Pocatello, ID 83209 U.S.A.
E-mail address: mzafrullah@usa.net