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PRINCIPAL IDEALS ARE INVERTIBLE
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A�������. We study locally principal ideals and integral domains, called LPI
domains, in which every nonzero locally principal ideal is invertible. We show
that a finite character intersection of LPI overrings is an LPI domain. Hence
if a domain D is a finite character intersection D = ∩DP for some set of prime
ideals of D, then D is an LPI domain.

Bazzoni in [10] and in [11] put forward the conjecture: If D is a Prüfer domain
such that every nonzero locally principal ideal of D is invertible, then D is of finite
character. (A domain D is Prüfer if every nonzero finitely generated ideal of D
is invertible and D is of finite character if every nonzero nonunit of D belongs
to only finitely many maximal ideals of D.) This conjecture was resolved in the
affirmative by Holland, Martinez, McGovern, and Tesemma in [18]. Later Halter-
Koch [16] stated and proved an analog of Bazzoni’s conjecture for r-Prüfer monoids,
which in the domain case are PVMD’s (defined below) and include Prüfer domains.
Recently, in [23], the second author has treated the Bazzoni Conjecture in a simpler
manner encompassing the results of the above mentioned authors. This note is to
record the results proved in an effort to answer the following question. What are
the domains, called LPI domains, that have the property LPI: every nonzero locally
principal ideal is invertible? Our main result is that a finite character intersection
of LPI overrings is an LPI domain. Hence if D has a set S of prime ideals with
D = ∩P∈SDP being of finite character, D is an LPI domain. As our work will
involve the use of star operations, we provide below a quick review.

Most of the information given below can be found in [22] and [13, sections 32,
34], also see [15]. Let D denote an integral domain with quotient field K and let
F (D) be the set of nonzero fractional ideals of D. A star operation ∗ on D is a
function ∗ : F (D)→ F (D) such that for all A,B ∈ F (D) and for all 0 �= x ∈ K

(a) (x)∗ = (x) and (xA)∗ = xA∗,
(b) A ⊆ A∗ and A∗ ⊆ B∗ whenever A ⊆ B, and
(c) (A∗)∗ = A∗.
For A,B ∈ F (D) we define ∗-multiplication by (AB)∗ = (A∗B)∗ = (A∗B∗)∗. A

fractional ideal A ∈ F (D) is called a ∗-ideal if A = A∗ and a ∗-ideal A is of finite
type if A = B∗ where B is a finitely generated fractional ideal. A star operation
∗ is said to be of finite character if A∗ =

⋃
{B∗ | 0 �= B is a finitely generated

subideal of A}. For A ∈ F (D) define A−1 = {x ∈ K | xA ⊆ D} and call A ∈ F (D)
∗-invertible if (AA−1)∗ = D. Clearly every invertible ideal is ∗-invertible for every
star operation ∗. If ∗ is of finite character and A is ∗-invertible, then A∗ is of finite
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type. The best known examples of star operations are the d-operation defined by
A 
→ Ad = A, the v-operation defined by A 
→ Av = (A−1)−1, and the t-operation
defined by A 
→ At =

⋃
{Bv | 0 �= B is a finitely generated subideal of A}. Given

two star operations ∗1, ∗2 on D we say that ∗1 ≤ ∗2 if A∗1 ⊆ A∗2 for all A ∈ F (D).
Note that ∗1 ≤ ∗2 if and only if (A∗1)∗2 = A∗2 for all A ∈ F (D), or equivalently,
(A∗2)∗1 = A∗2 for all A ∈ F (D). By definition t is of finite character, t ≤ v,
and ρ ≤ t for every star operation ρ of finite character. If ∗ is a star operation
of finite character, then using Zorn’s Lemma we can show that a proper integral
ideal maximal with respect to being a ∗-ideal is a prime ideal and that every proper
integral ∗-ideal is contained in a maximal ∗-ideal. Let us denote the set of all
maximal ∗-ideals by ∗-max(D). It can also be easily established that for a star
operation ∗ of finite character on D, we have D = ∩{DM |M ∈ ∗-max(D)}. A
v-ideal A of finite type is t-invertible if and only if A is t-locally principal, i.e., for
every M ∈ t-max(D) we have ADM principal. An integral domain D is called a
Prüfer v-multiplication domain (PVMD) if every nonzero finitely generated ideal
of D is t-invertible. According to Griffin [14, Theorem 5] D is a PVMD if and only
if DM is a valuation domain for each M ∈ t-max(D). A domain D is said to be of
finite character (resp., finite t-character) if every nonzero nonunit of D belongs to
only a finite number of maximal ideals (resp., maximal t-ideals), or equivalently, the
intersection D = ∩{DM |M ∈ max(D)} (resp., D = ∩{DM |M ∈ t-max(D)}) is of
finite character or is locally finite, i.e., each nonzero element of D (orK) is a unit in
almost all DM . More generally, we say that D is of finite prime character (or finite
S-character, if we need to mention the set S) if there exists a set S of prime ideals
of D with D = ∩P∈SDP locally finite. We can now state the PVMD analog of
Bazzoni’s conjecture which was proved by Halter-Koch [16] and the second author
[23]: a PVMD D is of finite t-character if and only if every t-locally principal t-ideal
of D is t-invertible.

Recall that an ideal I in a ring R is called a cancellation ideal if IJ = IK for
ideals J and K of R implies that J = K. Note that in this definition we can replace
“=” by “⊆”. In [7] it was shown that an ideal I is a cancellation ideal if and only
if for each maximal ideal M of R, IM is a regular principal ideal of RM . With this
in mind, we have the following characterization of nonzero locally principal ideals
in an integral domain.

Theorem 1. For an integral domain D and nonzero ideal I of D, the following
conditions are equivalent.

(1) I is locally principal.
(2) I is a cancellation ideal.
(3) I is faithfully flat as a D-module.

Proof. (1) ⇔ (2) This is given in [7, Theorem] as mentioned in the previous para-
graph. (1) ⇒ (3) This follows since being faithfully flat is a local condition.
(3)⇒ (2) Suppose that IJ ⊆ IK for ideals J andK ofD. Then I⊗D((J+K)/K) =
I ⊗D (J +K)/I ⊗D K = I(J +K)/IK = IK/IK = 0; so (J +K)/K = 0, that
is, J ⊆ K. Here the first two equalities follow from the flatness of I and the last
equality from the “faithfulness”. �

With this preparation we return to the question: What integral domains satisfy
the property LPI: every nonzero locally principal ideal is invertible? Now it is well
known that a nonzero ideal is invertible if and only if it is finitely generated and
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locally principal [20, Theorems 58 and 62]. So this gives the criterion that a nonzero
locally principal ideal is invertible if (and only if) it is finitely generated. Thus a
Noetherian domain is an LPI domain. Also, according to Lemma 37.3 of Gilmer
[13], stated below for integral domains (with our addition of the last statement),
every semi-quasi-local domain is an LPI domain. In fact, in a semi-quasi-local
domain a locally principal ideal is actually principal [20, Theorem 60]. However,
the result that we would really like, namely that a locally principal ideal contained
in only finitely many maximal ideals is invertible, is not true. For [13, Example
42.6] gives an example of an almost Dedekind domain D (i.e., D is locally a DVR)
with exactly one noninvertible maximal ideal M . Thus M is contained in a unique
maximal ideal and is locally principal, but M is not invertible.

Proposition 1. ([13, Lemma 37.3]) Let x ∈ D such that x belongs to finitely many
maximal ideals M1,M2, ...,Mn of D. If A is an ideal of D containing x such that
ADMi

is finitely generated for each i between 1 and n, then A is finitely generated.
(Hence if A is nonzero locally principal, A is invertible.)

We next give a slight extension of Proposition 1 which has the added benefit
that its converse is also true.

Theorem 2. Let D be an integral domain and I a nonzero locally principal ideal
(resp., locally finitely generated ideal) of D that is contained in only finitely many
maximal ideals. Then I is invertible (resp. finitely generated) if and only if there
exits a finitely generated ideal A ⊆ I such that A is contained in only finitely many
maximal ideals. In the invertible case I can be generated by two elements.

Proof. (⇒) If I is finitely generated (which includes the invertible case), we can take
A to be I. (⇐) Suppose that A is contained in the maximal ideals M1,M2, ...,Mn.
If I � Mi for some i, then for x ∈ I − Mi, we can replace A by (A, x) and
(A, x) �Mi. Thus we can assume that M1,M2, ...,Mn are also the maximal ideals
containing I. For each i, choose a finite set {bij} in I with DMi

(bij) = IMi
. Replace

A by (A, {b1j}, . . . , {bnj}). Then AMi
= IMi

for each i and AN = DN = IN for
each other maximal ideal N of D. So A = I locally and hence globally. Thus I is
finitely generated. Hence if I is locally principal, then I is finitely generated and
locally principal and thus invertible. The last statement follows from [13, Exercise
9, Section 7]. �

What is really behind the fact that a nonzero finitely generated locally principal
ideal is invertible is the fact that for ideals I and J of a commutative ring R with
I finitely generated and any multiplicatively closed set S of R, we have (J : I)S =
(JS : IS). We next give a characterization of invertible ideals using this. The last
statement of the next theorem is a special case of [4, Theorem 12].

Theorem 3. (a) For a nonzero locally principal ideal I of an integral domain D,
the following conditions are equivalent.

(1) I is invertible.
(2) I is finitely generated.
(3) For all nonzero x ∈ I, (Dx :D I)M = (DMx :DM

IM ) for each maximal
ideal M of D.
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(4) For some nonzero x ∈ I, (Dx :D I)M = (DMx :DM
IM ) for each

maximal ideal M of D.
(5) (I−1)M = (IM )

−1 for each maximal ideal M of D.
(b) Let I be a nonzero locally principal ideal of an integral domain D. Suppose

that for some nonzero x ∈ I, Dx has a primary decomposition. Then I is
invertible. Thus an integral domain in which every proper principal ideal
has a primary decomposition is an LPI domain.

Proof. (a) (1) ⇒ (2) ⇒ (3) ⇒ (4) Clear. (4) ⇒ (1) Let M be a maximal ideal
of D. Now ((Dx : I)I)M = (DMx : IM)IM = DMx where the last equality holds
since IM is principal. Thus (Dx : I)I = Dx locally and hence globally. Since I
is a factor of a nonzero principal ideal, I is invertible. (2) ⇒ (5) (I−1)M = [D :K
I]M = [DM :K IM ] = (IM )

−1 where the second equality follows since I is finitely
generated. (5)⇒ (1) (II−1)M = IM (I−1)M = IM(IM )−1 = DM for each maximal
ideal M of D. Here the last equality holds because IM is principal. So II−1 = D
and hence I is invertible. (b) Suppose that Dx = Q1 ∩ · · · ∩ Qn where each Qi is
primary. Then (Dx : I) = (Q1∩· · ·∩Qn : I) = (Q1 : I)∩· · ·∩(Qn : I). Now for any
multiplicatively closed set S and any primary ideal Q we have (Q : I)S =(QS : IS).
(See, for example, [4, Lemma 11].) Hence (Dx : I)S = (Q1∩· · ·∩Qn : I)S = ((Q1 :
I) ∩ · · · ∩ (Qn : I))S = (Q1 : I)S ∩ · · · ∩ (Qn : I)S = (Q1S : IS) ∩ · · · ∩ (QnS : IS) =
(Q1S ∩ · · · ∩QnS : IS) = (DSx : IS). By (a) I is invertible. �

While the condition that the nonzero locally principal ideal I contains a nonzero
principal ideal having a primary decomposition is sufficient for I to be invertible,
it is by no means necessary. For example, if V is a two-dimensional valuation
domain and x is a nonzero element of V contained in a height-one prime ideal,
then certainly V x is invertible, but V x contains no nonzero principal ideal having
a primary decomposition.

Of course, using Proposition 1 or Theorem 2, we conclude that if D is of finite
character, then nonzero locally principal ideals are invertible and can be generated
by two elements. Note that the example of a Dedekind domain that is not a PID
shows that we can not replace “two elements” by “one element” here or in Theorem
2.

Recall that if {Dα} is a family of overrings ofD (rings betweenD and its quotient
field K) such that D = ∩Dα, then the function A 
→ ∩ADα is a star operation
which is of finite character if D = ∩Dα is of finite character [2, (4) Theorem 2 ].
Also, observe that if I is a nonzero locally principal ideal of D and T is an overring
of D (or more generally any integral domain containing D as a subring), then IT
is (nonzero) locally principal. If IT = T , this is clear. Suppose that IT ⊆ M , a
maximal ideal of T , and let P =M∩D. Then IDP is principal (being a localization
of IDN for any maximal ideal N of D containing P ). Hence (IT )M = IDPTM is
principal. Thus by Theorem 1, IT is also a cancellation ideal.

We have one more result to quote before we give the main result of this note.

Lemma 1. ([1, Theorem 2.1]) Let I be a nonzero locally principal ideal in an
integral domain. Then I is a t-ideal. Further, I is invertible if and only if I is of
finite type.
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Note that while a nonzero locally principal ideal is a t-ideal, it need not be a
v-ideal. (Of course, an invertible ideal is a v-ideal.) For example, if D is an almost
Dedekind domain, then a maximal ideal M of D is locally principal, but M is a
v-ideal if and only if M is invertible. Note that a locally principal v-ideal need not
be invertible. For let D be an integral domain that is locally a GCD domain, but
is not a GGCD domain. (Recall that D is a GGCD domain if the intersection of
two invertible (or equivalently, principal) ideals is invertible.) So there are nonzero
x, y ∈ D with (x) ∩ (y) not invertible. But (x) ∩ (y) is a locally principal v-ideal,
necessarily not of finite type. For an example of such a domain, see [17]. With this
preparation we have our main result.

Theorem 4. Let D be an integral domain where D = ∩Dα is a finite character
intersection of overrings Dα each satisfying LPI. Then D is an LPI domain. Hence
if D has finite prime character (i.e., D has a set S of prime ideals such that
D = ∩P∈SDP is of finite character), then D is an LPI domain.

Proof. Let ∗ be the star operation given by A 
→ ∩ADα. Since the intersection is
of finite character, ∗ has finite character. Let I be a nonzero locally principal ideal
of D. Choose 0 �= x ∈ I. Let α1, . . . , αn be the indices with xDα �= Dα. Now IDαi
is nonzero locally principal and hence invertible and thus finitely generated. So we
can enlarge Dx to a finitely generated ideal A ⊆ I such that IDα = ADα for each
α. Thus I∗ = ∩IDα = ∩ADα = A∗. Since ∗ has finite character and I is a t-ideal,
we have I = It = (I∗)t = (A∗)t = At. So I has finite type. By Lemma 1, I is
invertible. The second statement is now immediate because a quasi-local domain
is an LPI domain. �

Recall that an integral domain D is a Mori domain if it satisfies the ascending
chain condition on divisorial ideals. So Mori domains include Noetherian domains
and Krull domains. The reader may see [9] for an introduction to these rings and
for a recent bibliography. For our purposes let us note that in a Mori domain D
every maximal t-ideal is divisorial and from Theorem 3.3 of [9] we conclude that a
Mori domain is of finite t-character.

Corollary 1. In any integral domain of finite character or finite t-character, every
nonzero locally principal ideal is invertible. Consequently, a Mori domain is an LPI
domain.

We next mention a result related to the second statement of Theorem 4. Note
that this proposition can be used to give an alternate proof of the second statement
of Theorem 4. For if we assume that the ideal A in Proposition 2 is nonzero locally
principal, then A being t-invertible is of finite type. So by Lemma 1, A is invertible.

Proposition 2. ([6, Lemma 2.2]) Let S be a collection of nonzero prime ideals of
an integral domain D. Suppose that D = ∩P∈SDP where the intersection has finite
character. Let ∗ be the star operation A 
→ A∗ = ∩P∈SADP . If A ∈ F (D) such
that ADP is principal for each P ∈ S, then A is ∗-invertible and hence t-invertible.

We next consider the question of when the polynomial ring D[X] is an LPI
domain. We show that if D[X] is an LPI domain, then so is D and for D integrally
closed, the converse is true. While we do not know in general whether D an LPI
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domain implies D[X] is an LPI domain, we note that D has finite prime character
(resp., finite t-character) if and only if D[X] does.

Theorem 5. Let D be an integral domain.

(1) If D[X] is an LPI domain, then so is D. If D is an integrally closed LPI
domain, then D[X] is an LPI domain.

(2) D has finite prime character if and only if D[X] has finite prime character.
(3) D has finite t-character if and only if D[X] has finite t-character.

Proof. (1) Suppose that D[X] is an LPI domain. Let A be a nonzero locally princi-
pal ideal of D. Then by the remarks of the paragraph preceding Lemma 1, AD[X]
is a nonzero locally principal ideal of D[X]. Since D[X] is an LPI domain, AD[X]
is invertible. Hence A is invertible. So D is an LPI domain. Conversely, suppose
that D is an integrally closed LPI domain. Let B be a nonzero locally principal
ideal of D[X]. Since D is integrally closed and B is a t-ideal, B = f

g
AD[X] where

f, g ∈ D[X] and A is a t-ideal of D (see, for example, [3, Corollary 3.1]). Now B
nonzero locally principal implies AD[X] is nonzero locally principal and hence A is
nonzero locally principal. (For let M be a maximal ideal of D. Then AD[X](M,X)
is principal and thus AD[X]M[X] = ADM (X) is principal. But then ADM is prin-
cipal.) Since D is an LPI domain, A is invertible. Thus AD[X] is invertible and
hence so is B. So D[X] is an LPI domain.

(2) (⇐) Suppose that D[X] has finite S-character: D[X] = ∩Q∈SD[X]Q, lo-
cally finite. Let S′ = {Q ∩ D|Q ∈ S}. Then D = ∩P∈S′DP is a finite S′-
character representation for D. For certainly this representation is locally finite.
And D = ∩P∈S′DP since D = D[X] ∩K = (∩Q∈SD[X]Q) ∩K = ∩Q∈S(D[X]Q ∩
K) ⊇ ∩P∈S′DP ⊇ D since D[X]Q ∩ K ⊇ DP where P = Q ∩ D. (⇒) Suppose
that D has finite S-character, so D = ∩P∈SDP is locally finite. Now D[X] =
∩P∈SDP [X] (but is not locally finite) and DP [X] = D[X]P [X] ∩K[X]. So D[X] =
(∩P∈SD[X]P [X]) ∩ (∩Q∈TD[X]Q) is a finite prime character representation where
T = {Q ∈ Spec(D[X])|Q ∩ D = 0}. The locally finiteness follows since for
f
g
∈ K(X), the contents c(f) and c(g) of f and g, respectively, are contained

in only finitely many P ; so f
g

is a unit in almost all D[X]P [X].

(3) This is given for D integrally closed in [21, Proposition 4.2]; but the hypoth-
esis that D is integrally closed is not used. We offer a simpler proof. Recall from
[19, Proposition 1.1] that if M is a maximal t-ideal of D[X] with M ∩D �= 0, then
M = (M ∩ D)[X]. Noting that if A is an integral t-ideal of D, then A[X] is an
integral t-ideal of D[X], we conclude that A is a maximal t-ideal of D if and only if
A[X] is a maximal t-ideal of D[X]. Now suppose that D[X] is of finite t-character
and take a nonzero nonunit d ∈ D. Then d belongs to only a finite number of max-
imal t-ideals of D[X], each necessarily of the form M [X] where M is a maximal
t-ideal of D. So D is of finite t-character. Conversely, suppose that D is of finite
t-character. Let f be a nonzero nonunit of D[X]. Then f belongs to two kinds of
maximal t-ideals M : (a) M such that M ∩D �= 0 and (b) M such that M ∩D = 0.
Now the ones in (a) are finite in number because D is of finite t-character and the
ones in (b) being uppers to zero are also finite in number. �

We opened this paper by noting that a Prüfer domain D is an LPI domain if
and only if D has finite character (or equivalently, finite t-character, since every
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nonzero ideal of a Prüfer domain is a t-ideal). Thus examples of non-LPI domains
include the ring of all algebraic integers and the ring of entire functions. Also, an
almost Dedekind domain is an LPI domain if and only if it is Dedekind.

LetD be an integral domain such that for each n ≥ 1 every proper principal ideal
ofD[X1, . . . ,Xn] has a primary decomposition (e.g.,D is Noetherian). Then for any
set of indeterminates {Xα}, every proper principal ideal of D[{Xα}] has a primary
decomposition and hence D[{Xα}] is an LPI domain. In particular, Z[{Xα}] is an
LPI domain. However, every ring is a homomorphic image of Z[{Xα}] for some set
of indeterminates {Xα}. Thus the homomorphic image of an LPI domain need not
be an LPI domain.

LetD be an integral domain and letX(1)(D) be the set of height-one prime ideals
ofD. ThenD is said to be weakly Krull ifD = ∩P∈X(1)(D)DP where the intersection
is locally finite. Note that D is weakly Krull if and only if every nonzero proper
principal ideal of D has a reduced primary decomposition involving only height-one
primes [5, Theorem 13]. Thus for a one-dimensional integral domainD the following
are equivalent: (1) D has finite character, (2) D has finite t-character, (3) D is
weakly Krull, (4) every proper principal ideal of D has a primary decomposition,
and (5) D is Laskerian, i.e., every proper ideal of D has a primary decomposition.
Note that D can be of finite prime character without each proper principal ideal
having a primary decomposition. For example, a valuation domain V is of finite
character and finite t-character, but each proper principal ideal of V has a primary
decomposition if and only if dimV = 1. However, no example comes to mind of a
domain D in which every proper principal ideal has a primary decomposition, but
D is not of finite prime character. Also, we have no example of an LPI domain that
is not of finite prime character.

We next give an example of a ring of finite character (and hence an LPI domain)
that is not of finite t-character. Thus an LPI domain need not be of finite t-
character. Note that conversely, if D has finite t-character, then D need not have
finite character as seen by D = K[X1, . . . ,Xn] where K is a field and n ≥ 2. Thus
K[X1] has finite character, but K[X1][X2] does not; so in Theorem 5 we can not
add (4) D is of finite character if and only if D[X] is.

Example 1. Let R be a regular local ring of dimension greater than 1 with quotient
field K and let X be an indeterminate over K. Then D = R+XK[X] is a domain
that is of finite character and hence every locally principal nonzero ideal is invertible,
but not of finite t-character. In fact, D contains a nonzero ideal A that is t-locally
principal, but not t-invertible.

Illustration: By Theorem 4.21 of [12] every maximal ideal of D is either of the
formM+XK[X] whereM is the maximal ideal of R or is of the form f(X)D where
f(0) = 1. Now a typical element ofD = R+XK[X] is of the form a

b
Xr(1+Xf(X))

where b | a if r = 0. If r = 0 and c = a
b
∈ R, then in c(1 + Xf(X)), c is

clearly comaximal with 1 +Xf(X), c ∈M +XK[X], and 1+Xf(X) is a product
of principal (maximal) primes. We conclude that c(1 + Xf(X)) belongs to only
a finite number of maximal ideals. Next if r > 0 we note that as X does not
belong to any prime ideal of the form (1 + Xg(X))D, a

b
Xr does not belong to

any maximal ideals containing 1+Xf(X), which means that 1+Xf(X) and a
b
Xr

are comaximal. Noting that a
b
Xr ∈ M + XK[X], which is unique in this case,

we conclude that a
b
Xr(1 + Xf(X)) belongs to only a finite number of maximal

ideals. Having exhausted all the cases we conclude that D is of finite character and
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consequently every nonzero locally principal ideal of D is invertible. To see that D
is not of finite t-character recall from page 437 of [12] for P a nonzero prime of R,
P +XK[X] is a maximal t-ideal of D if and only if P is a maximal t-ideal of R. As
R is a UFD with infinitely many non-associate principal primes we have infinitely
many distinct maximal t-ideals of the form pR+XK[X] containing the element X.
To construct the ideal A select a set {p1, p2, ...} of non-associate principal primes
of R and as in [23] we can construct A = ({p−11 · · · p−1n X}

∞
n=1) which is t-locally

principal, yet not of finite type and hence not t-invertible.

We end by considering the question: If D is an LPI domain and S is a multiplica-
tive set of D, must DS be an LPI domain? Note that if every proper principal ideal
ofD has a primary decomposition, then the same is true ofDS. Note, however, that
if D has finite t-character, then DS need not again be of finite t-character. In [8,
Example 2c] is an example of a domain D of finite t-character with a maximal ideal
M such that DM does not have finite t-character. But as in the above mentioned
example the result is still a quasi-local ring we do not have a definite counterex-
ample to the question. However, if D is of finite t-character and t-Spec(D) is treed
then the answer is yes for every multiplicative set S. Thus we have a simple special
case. Moreover, we do not know of an example of an integral domain of finite prime
character such that some localization DS does not have finite prime character and
we know of no example of an LPI domain with a localization that is not an LPI
domain Thus we end with the following questions.

Question 1. If D is an LPI domain, is D of finite prime character?

Question 2. If D is an LPI domain, is D[X] an LPI domain?

Question 3. If D is an LPI domain and S is a multiplicatively closed subset of D,
is DS an LPI domain?

Question 4. If every proper principal ideal of D has a primary decomposition, is
D of finite prime character?

Question 5. If D has finite prime character and S is a multiplicatively closed
subset of D, does DS have finite prime character?
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