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ABSTRACT. An integral domain without irreducible elements is called an an-
timatter domain. We give some monoid domain censtructions of antimatter
domains. Among other things, we show that if {3 is a GCD domain with quo-
tient field K that is algebraically closed, real closed, or perfect of characteristic
P > 0, then the monoid domain D|X; Q%] is ar antimatter GCD domain. We
also show that a GCD domain D is antimatter if 2nd only f £~ — D for each
maximal {-ideal P of D.

Let D be an integral domain with quotient field K. By an irreducible 2lement
or alomnm of D we mean 2 nomunit z € D* = [ — {0} such that ¢ = wv, v.v € D,
implies w or v is a unit. The domain D is afomic if each nonzero nonunit of
D is expressible as a finite product of atoms. However, il may bappen that a
domain does not have any atoms. Such domains, called antimatter demains, were
introduced by Coykendall, Dobbs, and Mullins [5]. A somewhat obvious example
of an antimatter domain is a valuation domain whose maximal ideal is not principal
[5, Proposition 1]. Another example is a field which, ironically, is also an example of
an atomic domain. It is patent that if 22 is an antimatter domain, or any integral
domain for that matter, then D[X] is not antimatter, as X 4 r is 20 atom in
D[X] for all r € D. On the other hand, the monoid domain C[X;Q*], where Q*
is the monoid of nonnegative rationals under additiou, is an antimatter domain
(Theorem 1). But Q[X;Q7] is not antimatter 2s X — 2 is irreducible. (If X —2
properiy factors in Q[.X;Q"], then X — 2 properly factors in some Q[X /"] since
Q is locally cyclic (that is, each finitely generated submonoid of Q7 is contained
in a cyclic submoneid of Q). But by iisenstein’s Criterion, X — 2 = (X" —2
is irreducible in Q[X'/™]).

The purpose of this paper is to explore the following question. For an integral
domain D and torsionless cancellative monoid § (always written additively), when
is the monoid domain D[X;S] antimatter? Certainly, if D[X; 5] is antimatter,
then D and S must be antimatter (a monoid 5 is antimatter if it has no atoms
where atoms are defined in the obvious way). However, as both @ and (Q7, +) are
antimatter while Q[X; Q"] is not, the converse is false. In this note we show that
if D is an antimatter GCD domain with quotient field K algebraically closed, real
closed, or perfect of characteristic p > 0, (Theorems 1, 2, and 5), then D[X; Q7] is
an antimatter domain. Our standard references are [6], [7]. and [10].

In the case where D = K is an algebraicaily closed or real closed field, we
can show that D[X: 5] is antimatter in slightly more gencrality than the case 5 =
(@1, +). Let us call a monoid S pure if (1) S is (order-isomorphic to) a submonoid
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of (QF,+), (2) S is locally cyclic, and (3) for cach = € S, there is a natural number
n > 1 (depending on s) with s/n € 5. We remark that in the presence of (2) and
{3), condition (1) can be replaced by either 5 is totally ordered and each s > 0 or
that S is reduced, cancellative, and torsionless. Examples of pure monoids include
(Q*,+) and (Z}.,+) where Zf = {n/tjn € Z*, + € T} with T a multiplicatively
closed subset of Z7 = {0, 1,2,---}. We will consider a pure monoid S to actually
be a submonoid of (QF,+). With this in mind, note that if 51, 50 € S with s < 89,
then sy — sy € 5. Indeed, (s1,22) C (s) for some ¢ € §; so s; = ns and sy = ms
where necessarily n < m. Then sy — sy =ms —ns = (m —n)s € 5. Observe that
for S pure and K any field, £[X;5] is a nonatomic Bezout domain. For by [6,
Theorem 13.6] a monoid domain K|[X;5] over a field K and monoid § is Bezout
if and only if § is isomorphic to 2 submenoid of {(Q,+). And if S is pure and
9# s €S, then s/n € S for some n > 1, s0 X* = (X*/™)" and hence K[X;5] does
not satisfy ACCP, or equivalently since K[X; 5] is Bezout, is not atomic.

THEOREM 1. Lel K be an algebraically clozed field and S a pure monoid. Then
K[X;S] is an antimatter Bezoul domain.

~

PROOF. We have already remarked that K[X:.5] is Bezout. Let f be a nonzero
nonunit of K[X;S];s0 f =k X521 4 ---+ k, X" where 0 < s; < --- < 8, and cach
ki £90. Now f = X' (ky + ko X2 1 + .. 3 k,, X7~ %1) where as previously noted
s; —s; € S. First, suppose that sy > 0. Choose y > 1| with s;/my € S. Then
X*® = (X*1/™)" and hence f is not irreducible. Next suppose that s, = 0, so
n > 1. Choose ¢ € S with (sy,---,¢,) € {¢). Then [ [actors into linear factors in
K[X9] since K is algebraically closed. Now 2 typical linear factor of f in K[X9)
has the form #p + #; X9, €y,#; € K with ¢, # 0. Choose m > 1 with ¢/m € S.
Then £o + £, X = £y + £,(X¥/™)y™ and is not, irreducible in K[X¥™]. Thus f is
not irreducible in K[X;8]. So K[X ;5] is an antimatter demain. i

Recall that a field K is real closed if K is formally real (that is, —1 1s not a
sum of squares) and K has no proper formally real algebraic extensions. Using
Zoru’s Lemma, every formally real fieid /7 is contained in a real closed field /& that
is algebraic over F. Also, if K is a resl closed field, then K (v/—1) is algebraically
closed. If K is formally real, then K(X) is again formally real for any set X of
indeterminates. Thus K(X) is contained in a real closed field. So there are plenty
of real closed fieids in addition to R. For resuits on real closed fields, the reader is
referred to [9, Section 5.1].

THEOREM 2. Let K be a real closed field and S a pure monoid. Then K|X;S]
is an anlimatter Dezout domain.

PROOF. We have aiready remarked that K[X; 5] is Bezout. Let [ = & X +
et kp X, 51 < --+ < 5, ki # 0, be a nonzero nonunit of K[X;S5]. As in the
proof of Theorem 1, f is not irreducible if 5; > 0. So suppose that s; = 0 and
bence . > 1. Choose ¢ € S with (sy, -+ ,5,) C (g) and m > 1 with g¢/m € 5.
Choose m/ > 1 with ¢/mm/ € S. Then f as a polynomial in KI[X%/™™ ] has
deg f > mm' > 2. But over a real closed field an irreducible polynomial hes degree
one or two. Hence [ is pot irreducible in K [Xq/ mm,] and bence not irreducibie in
K[X; 9] 0

We want to extend Theorems 1 and 2 to the case where D is a GCD domain.
Thus it is of interest to know when a GCD domain is antimatter. In [3, Proposition
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2.1] it was shown that a valuation domain (V, M) is antimatter if and only if M~} =
V, that is, M is not principal. We generalize this result. For a nonzero (fractional)
ideal [ of a domain D recall that [, = (F71)"1 where [ ' = [D:f] and [; =
U{-L,|0 # J C I, J is finitely generated}. An ideal [ is called a t-ddeal if J = Iy.
A proper integral t-ideal is contained in a maximal proper integral f-ideal and a
maximal ¢-ideal is prime.

THEOREM 3. (1) Suppese that D is an integral domain in which every irre-
ducible element is prime (e.g., a CCD domain). If P~' = D for each mazimal
t-ideal P of D, then D is anlimaller.

(2) If D is an antimatter GCD domain, then P~ = D for each mazimal {-ideal of
D.

ProOF. (1) Suppose that D has an irreducibie element p. By hypothesis, p is
prime. Hence (p) is 2 maximal t-ideal [8, Proposition 1.3]. But then (p) ' = D, a
contradiction.

(2) Suppose that D is an antimatter GCD domain. Let P be a maximal {-ideal of
D. Let z/y € P~! where z,y € D*. Since D is 2 GCD domain, we can assume
that [z,y] = 1. Suppose that z/y & D, so y is a nonunit. Now (z/y)FP C D gives
zP C (y). For 0 # p € F, y|lzp. But then [z,y] = 1 gives y|p. Hence P C (y) # D
and thus P = (y) since P is 2 maximal ¢-ideal. But then y is prime and hence
irreducible, a contradiction. Hence P~! = D). [

Thus a GCD (snd hence a Bezout domain) domair is antimatter if and only
if P~! = D for each maximal t-ideal P of D. However, we will later give an
example (Exarmaple 1} of an antimatter pre-Schreier domain with a maximal ideal
M satisfying M~ £ D (and hence M is a maximal ¢-ideal).

Recall that a saturated multiplicatively closed subset, S of D is a splitling sei
if for each € D*, = = as for some a € [J and s € S such that alDNtD = atD for
allt e 5.

LEMMA 1. Let D be an integral domain and S a spiitting set of D. Then 1 is
antimatter if and only if S contains no atoms and Dg is antimatier.

PROOF. (=) Suppose that D is antimatter. Then certainly S contains no
atoms. By [1, Corollary 1.4(d)], each atom of D5 is an associate in Ds of an atoms
of D. Since I} is antimatter, so is Dg. (+=) Suppose thal « is an atom of /2. Then
since z is an atom either z € S or zD NID = xtD for ali = € S. Since & contains
no atoms, the second case must hold. But then by [1, Corollary 1.4(c)], = is an
atom of Dg, a contradiction. (]

THEOREM 4. Let D be an antimatter GCD demain with quotient field K thal
is either algebraically closed or real closed. Then D[X;Q7] is an antimatier GCD
domain.

PROOF. By [6, Theorem 14.5], D[X; Q"] is a GCD domain. Since D is a GCD
domain each nonzero element f of D[X; Q%] has the form f =7 a; X% where
[a1, -+ ,an] = 1. Moreover,

(O wX®)DLX; Q] NG Q7] = (D a X)X Q)

i=1 i=1
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for all ¢t € D*. Hence D* is a splitting set in D[X;Q7]. Now D[X:Q]p- =
K[X;Q7"] is an antimatter domain by either Theorem 1 or Theorem 2, respectively.
Since D* contains no atoms, D[X; Q7] is antimatter by Lemma 1. ]

Note that the ring of algebraic integers is 2n antimatter Bezout domain with al-
gebraically closed quotient field. Other examples can be obtained via [10, Theorem
102]. We next give a characteristic p > 0 resuit.

THEOREM 5. (1) Let K be a perfect field of characteristic p > 0. Lel S be a
cardinal sum of copies of Q1. Then K[X;S5] is an antimatter GCD domain.
(2) Suppose thal D is an antimatter GCD domain with quotient field K where K
is a perfect field of characteristic p > 0. Then D[X;Q7T] is an antimatier GCD
domain.

PROOF. (1) Let f = 30" | & X* be a nonzero nonunit of K[X:S5]. Since K
is perfect, each ¢k; € K. Then [ = 3o kX = (Lo, YkX%/P)P is not
irreducible.

(2) By (1) K[X;Q"] = D[X;QT]p- is 2n antimatter domain. Then as in the proofl
of Theorem 4, D[X; Q%] is an antimatter GCD domain. O

We next give the promised example showing that Theorem 3(2) can not be
extended to pre-Schreier domains. We first recall some definitions end results. A
nonzero element z of D is primal if whenever z|yz, u, z € D, then = = ;24 where
z1 |y and zg|z. Call 2 primal element z complelely primal if each factor of x is primal.
Finally, D is pre-Schreier if each nonzero element of D is (completely) primal and an
integrally closed pre-Schreier domain is called a Scireier domain. Schreier domains
were introduced by P. M. Cohn [3] and the last author [12] introduced pre-Schreier
domains. Tt is easy to see [3] that a GCD domain is Schreier. in [3, Theorem
5.3] (respectively, {12, p. 1901]) it was shown that an atom in a Schreier domain
(respectively, pre-Schreier domain) is prime. So by Theorem 3(1) a pre-Schreier
domain D is antimatter if 7~! = D for each maximal t-ideal P of D. There
do exist examples of Schrcier domains that are not GCD domains [2, Exampie
2.10] and there do exist examples of antimatter domains (in which vacuously every
irreducible element is prime) but which are not pre-Schreier [2, Propesition 3.10].
We next give an example of an antimatter pre-Schreier domain having a maximal
ideal M that is a (maximal) t-ideal with M ' # D.

EXAMPLE 1. Let D = Q + ({X*|s € QF — {0}DR[X;Q7]. Then D is an
antimatter pre-Schreier domain having P = ({X*®|s € QF — {0}DR[X;Q"] as @
mazimal ideal with (P~)" ' = P = P? and henice P is a mazimal t-ideal wilh
P14 D.

Clearly P is a mazimal ideal of D. For f € 7. [ = X*g where @ > 0. Then
f=(X%2g: 50 f is not an atom and this also shows thot P = P: iffeD-P
is a nonunil, then f = s(1 + g) where s € Q* and g € P. Now 1+ g is a nonunii
of the antimatter domain R[X; Q"] so we can write 1+ g = (1+p1)(1 + p2) where
p1,p2 € P and 1+ p1,1 + p2 are nonunits of D. Hence D is anlimalier. We
show that P~' = R[X;Q"]. Certainly R[X;QF] C P~1. Also, Pl =[B:P] C
[RIX;Q*]:P] = R[X;Q%] C P! where the second equaiity follows since P 1z a
noninvertible mazimal ideal in the Bezout domain RIX;QT]. So P~' =R[X;Q*].
Now PR[X;Q*] =P, so P C (R[X;Q*]) ! C D, that is, P C P, # D. Since P 13
maximal, we have P = P,. We next show that D iz pre-Schreier. Let T = D — P.



So f € T has the form f = q(1 + p) where ¢ € Q* and p € P. We show that
elements of T are completely primal. Since T 15 saturoled, il is enough lo show that
elemenls of the form 1+p, p € P, are primal. Suppose that 1+ plab where a,b € D.
Then 1 + plab in the Bezoul (and hence Schreier) domain R[X;Q1]. Se we can
write 1+ p=(1+q )1+ ¢2), q1,92 € P where | +q;la and 1 + q5|b in R[X;Q1].
Note that actually 1 + qi|a and 1+ q|b in D. So 1+ p is primal. By Nagata’s
Theorem. for pre-Schreier domains (if S a saturated multiplicative set consisting of
completely primal elements and Ds pre-Schreier, then D 4s pre-Schreier; see [3] for
the Schreier case whose proof does not, use integral closure), it is enough to show that
Dy 13 pre-Schreier. Now Dy = Q+PR[X; Q7]r C R[X; Q1] = R[X; Q] rrixi@H)
where R[X; Q7] prpx;g+ 5 @ valuation domain. Since PR[X; Q1] PRiX Q1] L& not a
principal ideal of R[X;Qﬂ;»mx «t): Dr s a Schreier domain [11, Theorem 3.2].
It is inleresting to note that D is an ascending union of rings of the form Q@ +
XAMR[X ], each of which is atomic buf not pre-Schreier.

We end with the following two results.

THEOREM 6. (1) Let D be an integral domain with quetient field K # D, L be
u field eztension of K, B = D+ XL[X], and T = {f € R|f(0) = 1}. Then D is
antimatter if and only if Br is antimaltier.
(2) Let D be an antimatter Schreier domain and S a multiplicative set of D con-
tazning at least one nonunit. Lel T be the saluraled mulliplicative set of I =
D + X Dg[X] generated by the prime elements of R. Then Ry is antimaiier.

ProoOF. (1) Note that every nonzero element of /2 can be written as kX (1 +
X f(X)) wheren > 0, f(X) € L[X], and k € K* with k € D if n =0. Thus in Dr
each nonzero nonunit is an associate of kX" with k and n as above. For n > 2,
kX™ is clearly not an atom. Forn = [, D # K gives that kX is not an atom since
kX = r(kX/r) for all nonunits r € D*. (It is essential that D # K as K + XL[X]
is atomic.) And for n =0, k € D* properly {actors in D if and only if it. properly
factors in Rr. It follows that D is antimatter if and only if Ry is antimatter.
(2) As remarked in [4], R is a Schreier domain. Hence Rr is also a Schreier domain.
But in a Schreier domain atoms are the same thing as primes. Let a(X) be a nonzerc
principal prime of R. Since D is antimatter, 2{X) € D. Also, a(0) # 0 since X is
not an atom because X = s(X/s) where s € S is a nonunit. Thus a(X)HEN 7 = (0),
so Ryxyr O K[X] and hence is a DVR. Also, since each such a(X) extends Lo a
prime of K[X], no nonzero element of [T is divisible by infinitely many nonassociate
primes of B. Thus by [1, Propesition 1.6], 7" is a splitting set. Now there are no
nonzero principal primes in /27 because if there were one, then by [1, Corollary
1.4], there would be a corresponding nornzero principal prime in £ —7T. But this is
a contradiction sinee T is generated by all such primes. i
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