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Abstract. Let L(S) denote the set of lower bounds of a set S in partially ordered set T ,

and let G+ denote the positive cone of a partially ordered group G. We study directed groups

G with the (pR) property: if x1, x2, ..., xn ∈ G+ such that L(x1, x2, ..., xn) �= L(0) then there is

a strictly positive element l ≤ xi in G. Calling these groups pre-Riesz, we show that Conrad’s

F-condition which was stated for lattice ordered groups can still be stated for pre-Riesz groups

and has similar effects modulo minor changes in definitions of basic elements and bases. As

applications of our work we study integral domains whose groups of divisibility and groups of

∗-invertible ∗-ideals, for finite character star operations ∗, are pre-Riesz and pre-Riesz satisfying

Conrad’s F-condition.
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1. Introduction

We plan to study the pre-Riesz groups and Conrad’s F-condition with the backdrop of partially

ordered (p.o. for short) groups associated with an integral domain D, as that is where the study

originated. First of these is the, well known, group of divisibility G(D). This works well with

our plan, as we plan to study the other p.o. groups associated with D in light of our results

on G(D). As the definitions of others will require introduction we postpone the mention and

concentrate on the group of divisibility G(D) of an integral domain D. We shall look into the

situations when G(D) is a lattice ordered group, a Riesz group (a directed p.o. group with Riesz

interpolation property) or a pre-Riesz group (a directed p.o. group such that every finite set

of strictly positive elements with at least one non-negative lower bound has a strictly positive

lower bound) and in each case we shall study the effects of the so-called F-condition of Paul

Conrad’s. A lattice ordered group G is said to satisfy Conrad’s F-condition if every strictly

positive element of G exceeds at most a finite set of (mutually) disjoint elements. We plan

to introduce the relevant ring theoretic terminology along the way and show the relevance of

our study of the group of divisibility to other p.o. groups that arise from various notions of

invertibility of ideals.

In section 2 we put together group and order theoretic preliminaries, with an emphasis on

G(D). In section 3 we introduce pre-Riesz groups as a generalization of Riesz groups and hence

of lattice ordered groups. In this section we look at Conrad’s work on basic elements, bases and

Conrad’s F-condition in the framework of lattice ordered groups and generalize these notions

to pre-Riesz groups, showing finally that a pre-Riesz group satisfying Conrad’s F-condition has

a basis. In section 4, we introduce the notion of a star operation and study integral domains

with pre-Riesz group of divisibility. It turns out that these domains are precisely the domains

known as the PSP domains. We also show, assuming familiarity with star operations here, that

a PSP domain D is of finite t-character if and only if G(D) satisfies Conrad’s F-condition. This

treatment is a bit elaborate but we plan to use it to set the stage for section 5. Assuming

familiarity with ideal systems, for now, we plan to study in section 5, the groups Inv∗(D) of ∗-

invertible ∗-ideals of D under ∗-multiplication where ∗ is a star operation of finite type. We show

that Inv∗(D) is a directed p.o. group and study the domains for which Inv∗(D) is pre-Riesz

and show that in this case Inv∗(D) satisfies Conrad’s F-condition if and only if D is of finite

∗-character. We also characterize domains D such that every maximal ∗-ideal of D contains a

∗-invertible ∗-ideal that belongs to no other maximal ∗-ideal.

2. Preliminaries

Let D be an integral domain with quotient field K. For x, y ∈ K\{0}, we say that x divides y

with respect to D if there exists a ∈ D such that y = ax. Usually we use x | y or if a reference

to D is important, we use x |D y to denote the fact that x divides y with respect to D. Now

y = ax means yD = axD ⊆ xD. Thus x |D y if and only if yD ⊆ xD. Clearly since for all

x, y, z ∈ K× = K\{0}, x |D x and x |D y and y |D z implies x |D z we conclude that |D is a

preorder on K. However we note that x |D y and y |D x implies that xD = yD. Now xD = yD

if and only if x and y are associates of each other. Thus x |D y can be made into a partial order
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on G(D) = K×/U(D), where U(D) denotes the set of units of D, by defining xU(D) ≤ yU(D)

if and only if xD ⊇ yD. We shall use U for U(D).

It is now easy to see that if for any x, y, z ∈ G(D) and x ≤ y we readily have zx ≤ zy, (because

xD ⊇ yD implies zxD ⊇ zyD). That is, the partial order is compatible with multiplication in

G(D). We already know that G(D) = K×/U is a group under multiplication xU ∗ yU = xyU .

Now recall that a group G is called a p.o. group if G is partially ordered such that the partial

order is compatible with the group operation: if x ≤ y in G we have z · x ≤ z · y and x · z ≤ y · z

for all z ∈ G, where · is the binary operation of G. We shall mainly be concerned with Abelian

groups. Because of the compatibility condition we have x ≤ y if and only if y−1 ≤ x−1, in a p.o.

group.

Notes on p.o. groups ([10] will be our main reference for p.o. groups):

(1). We note that U is the identity of G(D), and the positive cone of G(D), G(D)+ = {xU ∈

G(D) : xD ⊆ D} = {xU : x ∈ D\{0}}. As, for each x ∈ K\{0}, xU can be identified with xD,

one can also define the group of divisibility as G(D) = {kD : k ∈ K\{0}}. A D-submodule A

of K is called an integral ideal if A ⊆ D. So G(D)+ can be identified with the set of (nonzero)

integral principal ideals of D.

(2). The group of divisibility G(D) of an integral domain D is a somewhat specialized p.o.

group. Specialized in that G(D) is upper directed, i.e., for all hU, kU ∈ G(D) there is at least

one lU ∈ G(D) such that hU, kU ≤ lU. We can define "lower directed" in a dual fashion. For

a p.o. group being upper directed is the same as being lower directed, hence every group of

divisibility G(D) is a directed group. However, note that there are directed groups which are

not groups of divisibility of any domain [21, pp. 394-395].

(3). Usually + is preferred as the notation for the binary operation in a p.o. group, even

when the binary operation is non-commutative. Respecting that we shall use + as the operation

in G(D), and often replace the identity U by zero 0. But for hU, kU ∈ G(D), hU + kU = hkU.

If you adopt the G(D) = {kD : k ∈ K×}, care must be taken to avoid regarding hD + kD as

the sum of two ideals, which may not make much sense in G(D), unless D is a B,zout domain

(every two or finitely generated ideal is principal). Note that B,zout domains are GCD domains,

but the converse is not true, for instance, Z[x] is a GCD domain which is not a B,zout domain

since gcd(x, 2) = 1 in Z[x], but x and 2 do not generate Z[x]; here Z is the ring of integers.

(4). If S = [A,≤] is a partially ordered set (poset) then S′ = [A,≤′], such that a ≤′ b if and

only if b ≤ a, is also a poset called the dual of S. To make a dual of a statement involving only

≤ or ≥ all we have to do is change ≤ into ≥ and vice versa, and make appropriate changes in

terminology.

(5). In a poset P it is important to know if a subset S has upper bounds, elements that

exceed every element of S. In notation U(S) = {x ∈ P : x ≥ s, ∀s ∈ S}, which is called the set

of upper bounds of S. If U(S) = Φ we say that S is not bounded from above. We define the

set of lower bounds L(S) dually and the corresponding definitions. So L(S) = {x ∈ P : x ≤ s,

∀s ∈ S} is the set of lower bounds of S, L(S) = Φ denotes S is not bounded from below.

(6). A set S ⊆ P is said to have a least upper bound (lub) or supremum (sup) if there is

b ∈ U(S) such that b ≤ x for all x ∈ U(S). That is, U(S) has a least element. It is easy to

see that if lub(S) = b exists, then it is unique. It is easy to see that lub(S) = b if and only if
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U(S) = U({b}); we usually denote U({b}) by U(b). If S consist of only two elements x, y then

lub(x, y), if it exists in P , is called the join of x and y and is denoted by x ∨ y. The symbol

∨ is called "join". We define greatest lower bound (glb) or infimum (inf) dually and note that

glb(S) = c if and only if L(S) = L(c). We denote glb(x, y), if it exists in P , by x ∧ y and call ∧

the meet symbol.

Formulas for upper/lower bounds of a subset S of a p.o. group G:

(1) For all a ∈ G we have a+ U(S) = U(a+ S) = U({a+ s : s ∈ S}). Thus if x, y, x ∨ y ∈ G,

then for all a ∈ G we have a+ (x ∨ y) = (a+ x) ∨ (a+ y).

(2) For all a ∈ G we have a+L(S) = L(a+ S) = L({a+ s : s ∈ S}). Thus if x, y, x ∧ y ∈ G,

then for all a ∈ G we have a+ (x ∧ y) = (a+ x) ∧ (a+ y).

(3) If S is a subset of a p.o. group G and −S = {−x : x ∈ S}, then −U(S) = L(−S). Thus

if x, y, x ∨ y ∈ G then −(x ∨ y) = −x ∧−y.

(4) −L(S) = U(−S). Thus if x, y, x ∨ y ∈ G then −(x ∧ y) = −x ∨−y.

(5) L(a, b) = a − U(a, b) + b = a+ b − U(a, b) for all a, b ∈ G. So a ∧ b = a+ b − (a ∨ b), if

a ∨ b ∈ G.

(6) U(a, b) = a− L(a, b) + b = a + b − L(a, b) for all a, b ∈ G. So a ∨ b = a + b − (a ∧ b), if

a ∧ b ∈ G.

Notes on lattice ordered groups:

Of interest are the sets P such that every pair of elements x, y in P has an lub in P i.e.

for all x, y ∈ P, x ∨ y exists and is in P . Such a set P is called a ∨-semilattice or a join

semilattice. Similarly we define a meet semilattice (∧-semilattice). P = {{a, b}, {a, c}, {a, b, c}}

with inclusion as the partial order can serve as a join semilattice that is not a meet semilattice,

and Q = {Φ, {a}, {b}} is a meet semilattice that is not a join semilattice. For a p.o. group,

however, being a join semilattice is equivalent to being a meet semilattice and vice versa, because

of formulas (5) and (6). A poset P that is a meet as well as a join semilattice is called a lattice.

So a p.o. group that is a meet or a join semilattice is a lattice and hence is called a lattice

ordered (l.o.) group. In an l.o. group the meet and join distribute over each other.

The simplest examples of l.o. groups come from totally ordered Abelian groups. Recall that

a poset P is totally ordered if for all x, y ∈ P we have x ≤ y or y ≤ x, so x = x∨ y or y = x∨ y.

We say that two elements x, y of a poset P are comparable if x ≤ y or y ≤ x, and denote

by x ‖ y if they are not comparable. So a poset P is totally or linearly ordered if every two

elements of P are comparable. Now a valuation domain V with quotient field K is defined by

the property that for all x, y ∈ K\{0}, x | y (yV ⊆ xV ) or y | x (xV ⊆ yV ). So G(V ) is totally

ordered and it is easy to see that if G(D) is totally ordered then D is a valuation domain. On

the other hand, W. Krull showed that for a given totally ordered Abelian group G, there exists

a valuation domain V such that the group of divisibility G(V ) is isomorphic to G.

Next G(D) is lattice ordered if and only if D is a GCD domain (for every pair x, y ∈ D\{0},

xD ∩ yD = mD is principal). If D is a GCD domain it is easy to see that mU = xU ∨ yU and

GCD(x, y) = xy
m
(= xU + yU −xU ∨ yU) = x∧ y. Now to show that a directed group G is lattice

ordered it is sufficient to show that G+ is a lattice [10, Proposition 3, p. 13] . Conversely, if G(D)

is lattice ordered then for each pair xU, yU ∈ G(D)+ we have mU = xU ∨ yU and it is easy to
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see that mD = xD∩yD, for each pair x, y ∈ D\{0}, so D is a GCD domain. On the other hand,

P. Jaffard and J. Ohm generalized Krull’s result to show that for a given l.o. Abelian group

G, there exists a B,zout domain D such that the group of divisibility G(D) is isomorphic to G.

Note that in the context of monoids and (generalized) divisor theories, Geroldinger and Halter-

Koch got a nice proof of the Jaffard-Ohm correspondence in [12]. Furthermore, Rump and

Yang [17] gave a categorical interpretation of the Jaffard-Ohm correspondence and established a

general extension theorem for valuations with values in an abelian l-group, which yields a proof

of Anderson’s conjectural refinement of the Jaffard-Ohm theorem.

3. The bases and Conrad F-condition in pre-Riesz groups

We call two positive elements x, y in a p.o. group G disjoint if for every z ≤ x, y we have z ≤ 0,

the identity of G, i.e. x∧y = 0. It is well known that in a p.o. group G if a ≤ b+c and a∧b = 0

with c ≥ 0, then a ≤ c. (Adding c to both sides of a ∧ b = 0 we have (a+ c) ∧ (b+ c) = c. Now

a ≤ a+ c, b+ c implies a ≤ a+ c ∧ b+ c = c.). Also if a, b are disjoint then a+ b = a ∨ b.

If x, y are two elements of a p.o. group G and if d = x ∧ y then x− d and y − d are disjoint

(subtract d from both sides.)

An l.o. group G has the following property: For x, a1, a2 ∈ G+, if x ≤ a1 + a2 then for

some b1, b2 ∈ G+, x = b1 + b2 where b1 ≤ a1 and b2 ≤ a2. (For this let b1 = x ∧ a1. Then

x − b1 ≤ (a1 − b1) + a2 which gives x − b1 ≤ a2, because (x − b1) ∧ (a1 − b1) = 0. Setting

x− b1 = b2 we have the result.)

For a general p.o. group G call an element x ∈ G+ primal if for all a1, a2 ∈ G+, x ≤ a1 + a2
implies that x = b1 + b2, for some b1, b2 ∈ G+ such that bi ≤ ai. This term appeared in the p.o.

group context in [25]. So, if G is an l.o. group every positive element of G is primal. A directed

p.o. G is called a Riesz group if every element of G+ is primal. For examples of Riesz groups

that are not l.o. groups we refer to [11, 19, 24]. The most prominent characterizing property

of Riesz groups is the (m,n)-interpolation property also called the Riesz interpolation property

(RIP): given x1, x2, ..., xm; y1, y2, ..., yn ∈ G with xi ≤ yj for all integers i ∈ [1,m], j ∈ [1, n]

there is z ∈ G such that

(3.1) xi ≤ z ≤ yj

for all integer pairs (i, j) ∈ [1,m]× [1, n].

Using the RIP we can prove the following result.

Proposition 3.1. In a Riesz group G the following property holds. (pR): If 0 < x1, x2, ..., xn ∈

G with L(x1, x2, ..., xn) �= L(0), then there exists r ∈ G such that 0 < r ≤ x1, x2, ..., xn.

Proof. If L(x1, x2, ..., xn) �= L(0) then there is at least one g ∈ L(x1, x2, ..., xn) such that g � 0.
Thus we have 0, g ≤ x1, x2, ..., xn and by RIP there is r such that 0, g ≤ r ≤ x1, x2, ..., xn. Now

r ≥ 0 and r �= 0 because of g. �

An integrally closed integral domain whose group of divisibility is a Riesz group was introduced

as a Schreier domain in [6] and its more general form, an integral domain whose group of

divisibility is Riesz was discussed in [23] as a pre-Schreier domain. Translating directly from
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the definition of a Riesz group, D is a pre-Schreier domain if and only if for every triplet

x, y, z ∈ D\{0}, x | yz implies x = x1x2 where x1 | y and x2 | z.

Call a directed p.o. group G a pre-Riesz group if G satisfies the property (pR). Conrad’s

F-condition [7] on l.o. groups reads: Each strictly positive element x in an l.o. group G is

greater than at most a finite number of (mutually) disjoint elements.

Let us, briefly, see how Conrad proceeded in [7] and what he achieved.

For G an l.o. group call x ∈ G basic if x > 0 and [0, x] is a chain i.e. all h, k with 0 ≤ h, k ≤ x

are comparable. Call a set S ⊆ G disjoint if for every pair of distinct strictly positive elements

x, y ∈ S, x∧y = 0. A set that is maximal w.r.t. being disjoint and which contains basic elements

only is called, in [7], a basis of G. Not every l.o. group has a basis and we have included a simple

example (Example 3.6) towards the end of this section.

Conrad in [7, Lemma 4.1] showed that a nonempty subset S of an l.o. group G is a basis

if and only if S is disjoint and (S\{s}) ∪ {x, y} is non-disjoint for any s ∈ S and for any

{x, y} ⊆ (G\S) ∪ {s}, with x �= y.

He calls a subset S of an l.o. group G independent if S is disjoint and if every element of S

is basic and he indicates, via Zorn’s Lemma, that a nonempty independent set is contained in a

maximal independent set [7, Lemma 5.2]. He also shows [7, Theorem 5.1] that an l.o. group G

has a basis if and only if every strictly positive element in G exceeds at least one basic element.

Moreover every basis of G is a maximal independent set and every maximal independent set is

a basis provided that G has a basis. Finally he shows [7, Theorem 5.2] that if an l.o. group G

satisfies condition F then G has a basis.

In a recent paper [16] Mott, Rashid and the second author redid, using their experience with

factorization in pre-Schreier domains, Conrad’s work, as far as the effect of Conrad’s F-condition

is concerned, for Riesz groups. We now investigate the effects of the F-condition in Pre-Riesz

groups. In what follows we use G to denote a pre-Riesz group for the sake of distinction.

First let us note that for x, y ∈ G+, x ∧ y �= 0 means that there exists 0 < r ≤ x, y. Here

x ∧ y �= 0 does not presume that x ∧ y exists.

Call x ∈ G+ a homogeneous element if for all h, k ∈ [0, x], h ∧ k = 0 implies that h = 0 or

k = 0. Since the only property of Riesz groups used in [16] was the property (∗) we conclude

that the results on homogeneous elements proved in [16] hold for pre-Riesz groups. Call two

homogeneous elements x, y of G related if x ∧ y �= 0.

We list below relevant results from [16, Proposition 2.1].

Proposition 3.2. Let G be a pre-Riesz group and let x, y ∈ G+. Then the following hold.

(1) x > 0 is a homogeneous element if and only if (0, x] is lower directed, i.e., for all a, b ∈

(0, x] there is t ∈ (0, x] such that t ≤ a, b. So if x is homogeneous and there is h with 0 < h ≤ x

then h is homogeneous. Thus x > 0 is not homogeneous if and only if there is at least one pair

c, d ∈ (0, x] such that c ∧ d = 0.

(2) If x∧ y = 0 and there is a u ∈ G with 0 < u ≤ y then x∧u = 0. Consequently if x, y > 0

and x ∧ y = 0, then for each pair (i, j) ∈ (0, x]× (0, y] we have i ∧ j = 0.

(3) Suppose that h and k are two homogeneous elements of G. Then the following are equiv-

alent:



BASES OF PRE-RIESZ GROUPS AND CONRAD’S F-CONDITION 7

(a) h ∧ k = 0, (b) for each pair (a, b) ∈ (0, h]× (0, k], a ∧ b = 0, (c) there is at least one pair

(a, b) ∈ (0, h]× (0, k] for which a ∧ b = 0.

(4) Suppose that h and k are two homogeneous elements of G. Then the following are equiv-

alent:

(r) h∧k �= 0, i.e., h and k are related (s) for each pair (a, b) ∈ (0, h]×(0, k] we have a∧b �= 0,

(t) there is at least one pair (a, b) ∈ (0, h]× (0, k] such that a ∧ b �= 0.

(5) Relatedness is an equivalence relation on the set of all homogeneous elements.

(6) If x, y ∈ G+ and x∧y = 0 and if h is a homogeneous element then h must be disjoint with

at least one of x, y. More generally if there are mutually disjoint positive elements b1, b2, ..., bn
then h must be disjoint with at least n− 1 of the bi.

Now call a subset S of G a basis if S is a maximal disjoint set consisting of homogeneous

elements.

Lemma 3.3. A nonempty subset S of a pre-Riesz group G is a basis if and only if S is disjoint

and (S\{s})∪{x, y} is non-disjoint for any s ∈ S and for any {x, y} ⊆ (G\S)∪{s}, with x �= y.

Proof. Let S be a basis and suppose that for some s ∈ S, (S\{s})∪ {x, y} is disjoint for some

{x, y} ⊆ (G\S)∪{s}, with x �= y. But since S is maximal disjoint x∧s �= 0, y∧s �= 0. This leads

to the existence of 0 < t ≤ x, s and 0 < u ≤ y, s and to the existence of 0 < w ≤ t, u, x, y which

contradicts the assumption that x ∧ y = 0. Conversely suppose that S is disjoint and satisfies

the conditions set in the lemma. If S ∪ {x} is disjoint for some x ∈ G\S, then S\{s} ∪ {s, x}

is non-disjoint and s �= x, a contradiction. If s ∈ S and s is not homogeneous then there exists

at least one pair of elements 0 < x, y < s such that x ∧ y = 0. But then x, y /∈ S and x �= y

and (S\{s}) ∪ {x, y} is disjoint, a contradiction. Thus S is a maximal disjoint set consisting of

homogeneous elements. �

Call a set S ⊆ G independent if S consists of mutually disjoint homogeneous elements and

note that if we have an ascending chain {Fα}α∈I of independent subsets of G under inclusion

then the union of such a chain is again an independent set. For if x ∈ ∪Fα then x must be

homogeneous because x belongs to one of Fα. Also if there are two elements x, y ∈ ∪Fα with

x ∧ y �= 0 then for some α ∈ I we have x, y ∈ Fα. This observation leads to the following

statement.

Lemma 3.4. Let S be a nonempty independent set in a pre-Riesz group G. Then there is a

maximal independent set containing S.

Theorem 3.5. A nontrivial pre-Riesz group G has a basis if and only if (P): each 0 < x ∈ G

exceeds at least one homogeneous element. Every basis of G is a maximal independent set and

every maximal independent subset of G is a basis provided G has a basis.

Proof. Let S = {0 < aα : α ∈ I} be a basis for G and consider 0 < x ∈ G. There must exist

α ∈ I such that x ∧ aα �= 0, for otherwise x ∧ aα = 0 for all α ∈ I and that will contradict the

maximality of S as a disjoint set. Now x∧aα �= 0 implies that there is 0 < h ≤ x, aα. Because aα
is homogeneous, h is homogeneous. Hence x exceeds at least one homogeneous element. That

S is a maximal independent subset of G is obvious. Conversely, suppose that G satisfies the

property (P). By Lemma 3.4, there is a maximal independent subset T = {0 < aα : α ∈ I} of G



BASES OF PRE-RIESZ GROUPS AND CONRAD’S F-CONDITION 8

and by the property T �= φ. All we need show is that T is a maximal disjoint set. Suppose on

the contrary that there is an element 0 < x ∈ G such that x ∧ aα = 0 for all α ∈ I. But then

by property (P), x exceeds a homogeneous element h and by (2) of Proposition 3.2, h is disjoint

with aα for all α ∈ I, contradicting the choice of T as a maximal independent subset of G. �

Now we give the promised example of a lattice ordered and hence a pre-Riesz group without

basis. (This example is adapted from http://www.lohar.com/mithelpdesk/hd 0307.pdf )

Example 3.6. Let S = {Xα : α ∈ +} where + denotes the set of nonnegative rational numbers

and let K be an algebraically closed field with 0 characteristic. Also let R be the semi-group ring

K[S] = {
n∑

i=1
ciX

αi : ci ∈ K and αi ∈
+}. Then the group of divisibility G(R) of R is a l.o. group

without a basis.

Illustration: Note that R can be regarded as an ascending union of the PIDs Rn! = K[X
1

n! ]

where n! denotes the factorial of the natural number n. That is R =
⋃

Rn!, where obviously

Rn! ⊆ R(n+1)! for all natural numbers n. Being an ascending union of PIDs, R is a Bezout

domain and so the group of divisibility of R is a lattice ordered group. To show that G(R)

does not have a basis all we need is a strictly positive element a of G(R) such that a exceeds

no basic element. Or equivalently every strictly positive element b below a exceeds at least two

disjoint strictly positive elements. Translating, we need a nonzero nonunit a in R such that every

nonzero nonunit factor b of a has at least two coprime nonunit factors. We claim that X − 1 is

the required element. To establish this we show that (X−1) is a product of nonassociate primes

in Rn! for each n. Having done that we would have shown that every nonunit factor of (X − 1)

is a product of nonassociate primes in Rn! for some n. For this we note that in Rn! = K[X
1

n! ],

X − 1 = (X
1

n! )n! − 1.

Now the following general lemma will help.

Lemma 3.7. Let K be a field with characteristic 0 and let X be an indeterminate over K and

let D = K[X]. Then (Xn − 1)D is a radical ideal for every natural number n.

Proof. We first show that if (f(X))m divides (Xn − 1) then m = 1. To see this suppose

that (Xn − 1) = (f(X))mg(X). (Then clearly, f(0) �= 0 �= g(0). Differentiating both sides, with

respect to X, we get nXn−1 = m(f(X))m−1f ′(X)g(X)+(f(X))mg′(X) which forces (f(X))m−1

to divide nXn−1. But this is possible only if (f(X))m−1 is a unit, which means that m = 1. From

this it follows that (Xn − 1) is a product of distinct (mutually non associated) primes of K[X].

(We have adopted this proof for its simplicity and direcness. Otherwise, as one of the referees

points out, the proof is complete if we say that: In characteristic 0, cyclotomic polynomials have

no multiple zeros.) �

Note here that as K is algebraically closed all those nonassociate primes are linear polynomials

in Rn!. Now suppose that h is a nonunit factor of (X−1) in R and that there is a nonunit f ∈ R

such that for some m we have fm | h. This indeed means that fm | (X − 1). Since R is an

ascending union of {Rn!}, f is a polynomial in Rk! for some k and so fm | ((X
1

k! )k! − 1) and by

Lemma 3.7, m = 1. Thus d itself is a product of nonassociate primes in Rk! for some suitable k

and so is divisible by at least two coprime elements of R.

Theorem 3.8. If G satisfies Conrad’s condition F then G has a basis.
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Proof. Suppose that the condition holds but G has no basis. Then by Theorem 3.5 there is

at least one 0 < y ∈ G such that y exceeds no homogeneous element. This y is clearly non-

homogeneous. Thus there are at least two disjoint elements p1, q1 with y > p1, q1 > 0. None of

p1, q1 exceeds a homogeneous element for otherwise y would. So, say, p1 > p2, q2 > 0 so that

p2 ∧ q2 = 0. Since p1 ∧ q1 = 0 and p1 > q2 we have q1 ∧ q2 = 0. Next p2 > p3, q3 > 0 such that

p3∧q3 = 0. Again since p′is are disjoint with q′is we conclude that q1, q2, q3 are mutually disjoint.

Similarly producing q′s using p′s and using induction we can produce an infinite sequence {qi}

of mutually disjoint elements less than y. Contradicting the assumption that G satisfies F. � �

Corollary 3.9. For a pre-Riesz group G the following are equivalent:

(1) G satisfies Conrad’s F condition

(2) every strictly positive element exceeds at least one and at most a finite number of homo-

geneous elements.

Proof. (1) ⇒ (2) is direct. For (2) ⇒ (1), suppose that (2) holds yet G does not satisfy (1).

Then there is 0 < x ∈ G that exceeds an infinite sequence {xi} of mutually disjoint strictly

positive elements of G. Now each of xi exceeds at least one homogeneous element hi. Because

{xi} are mutually disjoint so are {hi} a contradiction. �

4. Integral domains D with G(D) pre-Riesz

To study integral domains with pre-Riesz groups of divisibility, we need to review the so-called

star operations on D. For this let F (D) denote the set of nonzero fractional ideals of D, i.e. D

submodules A of K such that there is d ∈ D\{0} such that dA ⊆ D. In terms of the group of

divisibility the fractional ideals A of D are among the subsets of G(D) that are bounded from

below. (For c, d ∈ D\{0}, c
d
D ≤ A ⇔ A ⊆ c

d
D ⇒ dA ⊆ cD ⊆ D. Also to each nonempty subset

S of G(D) you can assign a D submodule SD = {
n∑

i=1
sidi : si ∈ S and di ∈ D} of K generated

by S and indeed SD is a fractional ideal if and only if S is bounded from below.)

Most of the information given below can be found in [26, 13]. A star operation ∗ on D is a

function ∗ : F (D)→ F (D) such that for all A,B ∈ F (D) and for all 0 �= x ∈ K

(a∗) (x)
∗ = (x) and (xA)∗ = xA∗,

(b∗) A ⊆ A∗ and A∗ ⊆ B∗ whenever A ⊆ B,

(c∗) (A
∗)∗ = A∗.

Remark 4.1. Note that conditions (b∗) and (c∗) are essentially the axioms of a closure operator

on a join semilattice, hence they can be characterized by a single equation:

(4.1) A ∪ (A∗ ∪B∗)∗ = (A ∪B)∗

For a proof of (4.1) in detail the reader is referred to [20].

For A,B ∈ F (D) we define ∗-multiplication by (AB)∗ = (A∗B)∗ = (A∗B∗)∗ and ∗-addition

by (A+B)∗ = (A∗+B)∗ = (A∗+B∗)∗. A fractional ideal A ∈ F (D) is called a ∗-ideal if A = A∗

and a ∗-ideal of finite type if A = B∗ where B is a finitely generated fractional ideal. Clearly a

principal fractional ideal is a ∗-ideal for every star operation ∗ by (a∗). Also note that if {Aα}
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is a family of ∗-ideals, for an operation ∗, such that ∩Aα �= (0) then B = ∩Aα is a ∗-ideal.

(B = ∩Aα ⇒ B ⊆ Aα for each α ⇒ B∗ ⊆ Aα for each α ⇒ B∗ ⊆ ∩Aα = B. Because B ⊆ B∗

already we have B = B∗.)

A star operation ∗ is said to be of finite character if A∗ =
⋃
{B∗ | 0 �= B is a finitely generated

subideal of A} for all A ∈ F (D). To ensure that, for ∗ of finite character, 0 �= A is a star ideal

it is enough to check that for each nonzero finitely generated ideal I ⊆ A we have I∗ ⊆ A. To

each star operation ∗ we can associate an operation ∗s defined by A∗s =
⋃
{B∗ | 0 �= B is a

finitely generated subideal of A}, for all A ∈ F (D). It is easy to see that for a finitely generated

A ∈ F (D) we have A∗s = A∗. Using this fact we can verify that ∗ is of finite character if and

only if ∗s = ∗. So, for this reason, we shall use ∗s as a prototype for a star operation of finite

character.

For A ∈ F (D) define A−1 = {x ∈ K | xA ⊆ D} = {x : xa ∈ D for each a ∈ A\{0}} =

{x : x ∈
⋂

a∈A\{0}

a−1D} =
⋂

a∈A\{0}

a−1D. Clearly A ∈ F (D) implies A−1 ∈ F (D). The most

well known examples of star operations are: the v-operation defined by A �→ Av = (A−1)−1,

the t-operation defined by A �→ At =
⋃
{Bv | 0 �= B is a finitely generated subideal of A},

and the d-operation defined by d : A �→ A. The v-operation can also be equivalently defined

as A �→ Av =
⋂

(x∈K×)∧(A⊆xD)

xD, [10, page 101]. Now note that by (a∗) and (b∗) A ⊆ xD

implies that for any star operation A∗ ⊆ xD. Thus by the previous comment A∗ ⊆ Av for

every star operation ∗. Next Av, being an intersection of principal fractional ideals, is a ∗-ideal,

i.e. (Av)
∗ = Av for every star operation ∗. Also note that if A ⊆ B then A−1 ⊇ B−1 so

A−1 ⊇ (A∗)−1. So Av ⊆ (A
∗)v , but A∗ ⊆ Av implies that (A∗)v ⊆ (Av)v = Av. Thus (A∗)v =

Av which gives (A∗)−1 = A−1, and so (Av)
−1 = A−1. But as (Av)

−1 = ((A−1)−1)−1, we have

(A−1)v = A−1.

Given two star operations ∗1, ∗2 we say that ∗1 ≤ ∗2 if A∗1 ⊆ A∗2 for all A ∈ F (D). Note that

∗1 ≤ ∗2 if and only if (A∗1)∗2 = (A∗2)∗1 = A∗2 . By definition t is of finite character, t ≤ v while

ρ ≤ t for every star operation ρ of finite character. If ∗ is a star operation of finite character

then using Zorn’s Lemma we can show that a proper integral ideal maximal w.r.t. being a star

ideal is a prime ideal and that every proper integral ∗-ideal is contained in a maximal ∗-ideal.

Let us denote the set of all maximal ∗-ideals by ∗ −max(D). It can also be easily established

that for a star operation ∗ of finite character on D we have D =
⋂

M∈∗−max(D)

DM . Another

star operation that is gaining popularity these days is the so called w-operation defined by

A �→ Aw =
⋂

M∈t−max(D)

ADM . This star operation received detailed treatment by McCasland and

Wang in [18]. In this paper the w-operation was equivalently defined as Aw = {x ∈ K : xJ ⊆ A

for some finitely generated ideal J with J−1 = D}. The w-operation is also of finite character.

Now we are looking at integral domains D such that G(D) is a pre-Riesz group. Thus for

x1U,x2U, ..., xnU ∈ G(D)+ with L(x1U, x2U, ..., xnU) �= L(U) there must be x ∈ D\{0} such

that D < xU ≤ x1U,x2U, ..., xnU. This means that if

L(x1U, x2U, ..., xnU) �= L(U)

then there is a nonunit x ∈ D\{0} such that xD ⊇ x1D,x2D, ..., xnD, i.e.

(x1, x2, ..., xn) ⊆ xD.
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So we need to find ring-theoretic meanings of L(x1U,x2U, ..., xnU) �= L(U). But this inequality

means that there is tU = u
v
U for u

v
∈ K\{0} such that u

v
U ≤ xiU but u

v
U � U. That is u

v
D ⊇ xiD

but u
v
D � D, i.e., (x1, x2, ..., xn) ⊆

u
v
D where u ∤ v. This forces (x1, x2, ..., xn)v �= D, because if

(x1, x2, ..., xn)v = D then as (x1, x2, ..., xn) ⊆
u
v
D, this would force D = (x1, x2, ..., xn)v ⊆

u
v
D

resulting in u | v a contradiction. On the other hand if (x1, x2, ..., xn)v �= D then there exists
u
v
∈ K\{0} with u ∤ v such that (x1, x2, ..., xn) ⊆

u
v
D � D. (For if there is none such then via

⋂

y∈K\{0}
(x1,...,xn)⊆yD

yD = (x1, x2, ..., xn)v we would be forced to admit that (x1, x2, ..., xn)v = D.) This

can of course be translated back to L(x1U, x2U, ..., xnU) �= L(U). Thus L(x1U,x2U, ..., xnU) �=

L(U) if and only if (x1, x2, ..., xn)v �= D. Consequently we can make the following statement.

Proposition 4.2. An integral domain D has pre-Riesz group of divisibility if and only if

for all x1, x2, ..., xn ∈ D\{0} with (x1, x2, ..., xn)v �= D there is a non-unit x of D such that

(x1, x2, ..., xn) ⊆ xD.

Now recall that a set x1, x2, ..., xn ∈ D\{0} is said to be coprime (v-coprime) if (x1, x2, ..., xn) ⊆

xD implies that x is a unit (respectively if (x1, x2, ..., xn)v = D). From the above description

it is clear that a domain D has pre-Riesz group of divisibility if and only if for every finite set

x1, x2, ..., xn ∈ D\{0}, x1, x2, ..., xn coprime implies that x1, x2, ..., xn are v-coprime. Recall also

that a polynomial f =
n∑

i=0
fiX

i ∈ D[X] is called primitive (super primitive) if its coefficients

are coprime (v-coprime). A domain D over which Primitive polynomials are Super Primitive is

called a PSP domain. These domains have been around for some time, see for instance [2, 3].

It is easy to see that in a PSP domain coprime implies v-coprime.

In the case of PSP domains the F-condition can be translated to: Every nonzero nonunit

is divisible by at most a finite number of mutually coprime elements. Indeed a homogeneous

element in a PSP domain can be defined as a nonzero nonunit x such that every pair r, s of

nonunit factors of x is non (v-) coprime. So Corollary 3.9 can be restated as the following result.

Corollary 4.3. Let D be a PSP domain. Then G(D) satisfies Conrad’s F-condition if and

only if every nonzero nonunit of D is divisible by at least one and at most a finite number of

mutually coprime homogeneous elements.

In a PSP domain, Conrad’s F-condition can be put to another use; as was done in [22] for

GCD domains.

Remark 4.4. Let D be a PSP domain. Note that if x is any element of D\{0} such that x is

coprime with a homogeneous element t similar to r then x must be coprime to r. This is because

t similar to r means there is a nonunit s | t, r. So if x is coprime to t, x is coprime to s. Suppose

on the contrary that x is non-coprime to r then there is a homogeneous element u such that

u | x, r. Since x is coprime to s, u is coprime to s, resulting in two coprime nonunits dividing r

contradicting that r is homogeneous.

Lemma 4.5. If x1, x2, ..., xn, r are nonzero nonunits of a PSP domain, with r a homogeneous

element such that each of xi is non-coprime with r then there is a homogeneous element s,

similar to r such that (x1, x2, ..., xn) ⊆ sD.
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Proof. Because x1, r are not coprime there is a nonunit r1 such that (x1, r) ⊆ r1D. Using the

fact that if x2 is coprime to r1 then x2 must be coprime to r (by Remark 4.4) we conclude that

there must be a nonunit r2 in D such that (x2, r1) ⊆ r2D, repeating the above argument over

and over we get nonunits r3, ..., rn where each ri divides the preceding one and thus we have

(x1, x2, ..., xn) ⊆ rnD where rn is a nonunit factor of r and hence a homogeneous element similar

to r. �

Lemma 4.6. Let D be a PSP domain and let r be a homogeneous element of D. Then the set

P (r) = {x ∈ D: such that x is non coprime with r} is a maximal t-ideal of D.

Proof. Clearly P (r) contains all homogeneous elements similar to r and the 0 element. By

Lemma 4.5, P (r) is an ideal such that for all x1, x2, ..., xn ∈ P (r)\{0} there is a homogeneous

element s similar to r such that (x1, x2, ..., xn) ⊆ sD and hence (x1, x2, ..., xn)v ⊆ sD ⊆ P (r)

from which it follows that P (r) is a t-ideal. To see that P (r) is a maximal t-ideal let Q be an

integral ideal properly containing P (r). But then x ∈ Q\P (r) is coprime with r ensuring that

Q is not a t-ideal. (Since in a PSP domain, coprime is v-coprime.) �

Let us call the prime ideal P (r) of Lemma 4.6 the prime ideal associated with the homogeneous

element r. Call an integral domain of finite character (finite t- character) if every nonzero nonunit

of D belongs to at most a finite number of maximal ideals (maximal t-ideals).

Proposition 4.7. Let D be a PSP domain such that G(D) satisfies Conrad’s F-condition.

Then (a) every maximal t-ideal of D is associated to a homogeneous element and (b) D is of

finite t-character.

Proof. (a) Let Q be a maximal t-ideal of D and let x ∈ Q\{0}. Then because of the F-

condition there are finitely many mutually coprime homogeneous elements r1, r2, ..., rn dividing

x, by Corollary 4.3. We can assume that n is the largest such number. If Q is associated to one

of the ri, we have nothing to prove. Suppose now that Q does not contain any homogeneous

element. Then as Q �= P (ri), there is y ∈ Q\∪P (ri). So y is coprime to each of ri. On the other

hand (x, y)v �= D and so x and y must have a common factor t. This t has a homogeneous factor

h by Lemma 3.3 and because y is coprime to all of ri, t is coprime to all of ri contradicting

the assumption that r1, r2, ..., rn are all the mutually coprime homogeneous elements. Since this

contradiction has arisen from the assumption that Q does not contain a homogeneous element

we have the conclusion. The part (b) is now obvious. �

Instead of saying “G(D) satisfies Conrad’s F-condition" we may just say that D satisfies

Conrad’s F-condition.

Because G(D) is an l.o. group ⇒ G(D) is a Riesz group ⇒ G(D) is a pre-Riesz group

we conclude that D a GCD domain ⇒ D a pre-Schreier domain ⇒ D is a PSP domain. So,

Proposition 4.7 can be restated for pre-Schreier domains and for GCD domains.

Remark 4.8. It is well known and well documented that there are Riesz groups that are not

l.o. groups, see e.g. [11], and that there are pre-Schreier domains that are not GCD domains,

see e.g. [24]. Indeed there are examples (see [2]) of PSP domains that are not pre-Schreier.

Below we give two examples of PSP domains, one that is of finite t-character and one that is

not.
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Example 4.9. Let Z be the ring of integers, let R be the field of real numbers, and let X be

an indeterminate over R. Then D = Z +XR[[X]] is a PSP domain that is not a pre-Schreier

domain and does not satisfy Conrad’s F-condition.

Example 4.10. D = ZpZ +XR[[X]] is a PSP with only one maximal ideal and D obviously

satisfies Conrad’s F-condition.

Illustration. Example 4.9: Note that every maximal ideal of D = Z + XR[[X]] is prin-

cipal of the form pZ + XR[[X]] = pD and so a t-ideal. Now if x1, x2, ..., xn ∈ D such that

(x1, x2, ..., xn)v �= D then (x1, x2, ..., xn)v must be contained in one of the pD. So, D is a PSP

domain. That D is not of finite (t-) character follows from the fact that X is divisible by all the

primes in Z. To see that D is not pre-Schreier note that πX | X2 = X ·X but πX cannot be

written as πX = x1x2 such that xi | X. Example 4.10 obviously does not need any illustration.

Next we tackle the question: if D is a PSP domain of finite t-character must D satisfy Conrad’s

F-condition?

Lemma 4.11. Let D be a PSP domain. Then x ∈ D is a homogeneous element if and only if

x belongs to a unique maximal t-ideal.

Proof. If x belongs to a unique maximal t-ideal P then all nonunit factors of x belong to P

and hence are non-coprime. So, x is a homogeneous element. Conversely, suppose that x is

a homogeneous element and that x belongs to two maximal t-ideals P,Q. Let y ∈ P\Q and

z ∈ Q\P. Then as P,Q are maximal t-ideals (y,Q)t = D = (z, P )t. So there are q1, q2, ..., qr ∈ Q

such that (y, q1, q2, ..., qr)v = D. Now as qi share Q with x, (x, q1, q2, ..., qr)v �= D, hence there

is a nonunit t such that (x, q1, q2, ..., qr) ⊆ tD. Being a factor of a homogeneous element t is

homogeneous. Because t is a factor of qi, t must be coprime with y. On the other hand y shares P

with x and hence there is a nonunit common factor u of x and y, which leads to a homogeneous

element x having two coprime factors t and u a contradiction. �

Proposition 4.12. If D is a PSP domain of finite t-character then D satisfies Conrad’s

F-condition.

Proof. If D does not satisfy Conrad’s F-condition then there is an element x ∈ D\{0} such

that x is divisible by infinitely many mutually coprime elements. Now since a maximal t-ideal

cannot contain a pair of v-coprime elements there have to be infinitely many maximal t-ideals

containing x, a contradiction. �

Alternate proof. Let x ∈ D\{0} and let P, P1, P2, ..., Pn be the set of all the (distinct) maximal

t-ideals containing x. Then there are yi ∈ P\Pj such that each of yi belongs to P and to no

other maximal t-ideal. Now (x, y1, ..., yn) ⊆ P and to no other maximal ideal. But since P

is a t-ideal (x, y1, ..., yn)v �= D. But then by the PSP property there must be a y such that

(x, y1, ..., yn) ⊆ yD. But then y belongs to P and to no other maximal t-ideal. So by Lemma

4.11, y is homogeneous and because P is a maximal t-ideal we conclude that P = P (y). So each

of the maximal t-ideals of D is associated to a homogeneous element. Now each nonzero nonunit

of D is divisible by at least one and by the finite t-character property at most a finite number

of mutually coprime homogeneous elements. We have the result by Corollary 4.3. �
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We have concentrated more on the PSP domains so that they can serve as a prototype for

more general considerations, when we consider other p.o. groups related to integral domains.

5. Groups arising from notions of invertibility of ideals

The other p.o. groups that we have in mind come from the various notions of invertibility of

an ideal. We shall as above study those partially ordered groups and see what happens when

the group under consideration is an l.o. group, a Riesz group or a pre-Riesz group and how a

domain responds to any of these groups satisfying Conrad’s F-condition.

For a star operation ∗ call A ∈ F (D) ∗-invertible if there is a B ∈ F (D) such that (AB)∗ = D.

Remark 5.1. (AB)∗ = D implies (AA−1)∗ = D implies B∗ = A−1; A∗ = Av. Since ∗ ≤ v for

each ∗ operation, A being ∗-invertible implies A being v-invertible. So a ∗-invertible ∗-ideal is a

v-invertible v-ideal.

Illustration. Indeed B is obviously contained in A−1. So AB ⊆ AA−1 ⊆ D. Applying ∗

to both sides we have D = (AB)∗ ⊆ (AA−1)∗ ⊆ D. Next, multiplying (AB)∗ = D on both

sides by A−1 and applying ∗ we get (A−1)∗ = (A−1(AB)∗)∗ = (A−1AB)∗ = ((A−1A)∗B)∗ = B∗,

since A−1 is a v-ideal we conclude that B∗ = A−1. From this it also follows that if A ∈ F (D) is

∗-invertible then A∗ = Av. This is because in (AA−1)∗ = D, A∗ = (A−1)−1 = Av. For the last

part note that (AA−1)∗ = D implies ((AA−1)∗)v = D which implies (AA−1)v = D.

Clearly every invertible ideal is ∗-invertible for every star operation ∗.

Remark 5.2. If ∗ is of finite character and A is ∗-invertible, then there is a finitely generated

ideal I ⊂ A such that I∗ = A∗ and a finitely generated J ⊆ A−1 such that J∗ = A−1.

Illustration. This can be established as follows: If ∗ is of finite character then (AB)∗ = D

implies that there is a finite set {x1, x2, ..., xn} ⊆ AB such that

(x1, x2, ..., xn)
∗ = D.

Now as each of xi =
ri∑

j=1
aijbij where aij ∈ A and bij ∈ B. Thus there exist α1, α2, ..., αr ∈

A and b1, ..., br ∈ B such that xi ∈ (α1, α2, ..., αr)(b1, ..., br) for all i. So (x1, x2, ..., xn) ⊆

((α1, α2, ..., αr)(b1, ..., br)) ⊆ (α1, α2, ..., αr)B ⊆ AB.

Since (x1, x2, ..., xn)
∗ = (AB)∗ = D we have ((α1, α2, ..., αr)B)

∗ = D. Multiplying both sides

by A and applying ∗ we get (α1, α2, ..., αr)
∗ = A∗. Similarly there is J = (β1, β2, ..., βs) ⊆ B

such that J∗ = B∗ = A−1.

Remark 5.3. Because for every star operation ∗ of finite character ∗ ≤ t we conclude that if

A is ∗-invertible for a finite type ∗ then A is t-invertible. This is because (AA−1)∗ = D implies

D = ((AA−1)∗)t = (AA−1)t.

Let Inv∗(D) = {A ∈ F (D) : A is a ∗-invertible ∗-ideal}.

Proposition 5.4. For an integral domain D, and a star operation ∗ defined on D, the set

Inv∗(D) is an Abelian directed p.o. group under ∗-multiplication ordered by A ≤ B ⇔ A ⊇ B.
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The following lemma will be of help in proving the above proposition and in later considera-

tions.

Lemma 5.5. Let A ∈ F (D) be a ∗-invertible ideal. Then the following hold.

(1). For any B,C ∈ F (D), AB ⊆ AC implies that B∗ ⊆ C∗.

(2). If B ∈ F (D) is such that B ⊆ A∗ then there is an integral ideal C such that B∗ = (AC)∗.

Conversely if there is such an integral ideal C with B∗ = (AC)∗ then B ⊆ A∗.

(3). If B ∈ F (D) is ∗-invertible, then so is AB with inverse (A−1B−1)∗.

(4). If B ∈ F (D) is ∗-invertible and for some C ∈ F (D), B∗ = (AC)∗, then C is ∗-

invertible.

(5). If B ∈ F (D) is ∗-invertible, then there exists a ∗-invertible ideal C ⊆ AB such that

C ⊆ A∗, B∗.

(6). If B ∈ F (D) is ∗-invertible and A+B is ∗-invertible, then so is A∗ ∩B∗.

Proof. (1). Multiplying both sides of AB ⊆ AC by A−1 we get A−1AB ⊆ A−1AC. Now apply

the ∗-operation to get B∗ ⊆ C∗.

(2) Let B ⊆ A∗. Multiply by A−1 on both sides to get A−1B ⊆ A−1A∗ ⊆ D. Set C = A−1B.

Multiplying both sides of C = A−1B by A and applying ∗ we get B∗ = (AC)∗. Conversely

because C is integral AC ⊆ A. So B∗ = (AC)∗ ⊆ A∗.

(3). Multiply AB by A−1B−1 and apply the ∗-operation.

(4). Multiply both sides of B∗ = (AC)∗ by A−1 and apply ∗ to get

(A−1B)∗ = C∗.

By (3) A−1B is ∗-invertible. (This result holds more generally in monoids. We thank one of the

referees for reminding us of that.)

(5). Any d ∈ (A∩B)\{0} would prove the statement and, as one of the referees pointed out,

A and B do not have to be ∗-invertible for this to hold. Yet we keep (5) as it is to keep the flow

of the paper smooth.

(6) Note that, because A,B are ∗-invertible, A∗ = Av, B∗ = Bv. Now consider (A−1B−1(A+

B))∗ = (A−1AB−1 + A−1BB−1)∗ = (B−1 + A−1)∗, (because A and B are ∗-invertible). Next

because A,B,A+B are ∗-invertible (B−1+A−1)∗ must be ∗-invertible. Now ((B−1+A−1)∗)−1 =

(B−1 +A−1)−1 = (Av ∩Bv) = (A
∗ ∩B∗). Thus (A−1B−1(A+B)(A∗ ∩B∗))∗ = D. �

Proof of Proposition 5.4. That Inv∗(D) is closed under ∗-multiplication follows from (3)

of Lemma 5.5. The associativity and commutativity are inherited from the associativity of

multiplication of fractional ideals. Next D is the identity and the existence of inverse is a

part of the definition. So, Inv∗(D) is an Abelian group. Now Inv∗(D) is partially ordered

by inclusion and so by its dual ≤ . To see that ≤ is compatible with ∗-multiplication we let

A,B,X ∈ Inv∗(D) and let A ≤ B. Then A ⊇ B and by the usual properties of fractional ideals

of D we have AX ⊇ BX and so (AX)∗ ⊇ (BX)∗ and so (AX)∗ ≤ (BX)∗. That Inv∗(D) is

directed follows from (5) of Lemma 5.5. �

Note that when ∗ = d, Invd(D) is the group of invertible ideals of D, when ∗ = v, Invv(D)

is the group of v-invertible v-ideals of D. Next when ∗ = t, Invt(D) is the group of t-invertible
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t-ideals of D. In short with the order ≤ defined as above we have each of these groups partially

ordered and directed.

Now we look into what makes Inv∗(D) an l.o. group and if Inv∗(D) is l.o. what properties

does D have?

Call an integral domain a ∗-PrĄfer domain if every nonzero finitely generated ideal of D is

∗-invertible. These domains were studied by Anderson, Anderson, Fontana and Zafrullah, in [1].

It was shown in [1] that D is a ∗-PrĄfer domain if and only if every nonzero two generated ideal

of D is ∗-invertible.

Proposition 5.6. [1, Theorem 2.11] An integral domain D is a ∗-PrĄfer domain if and only

if Inv∗(D) is a l.o. group with inf(A,B) = (A+B)∗ for all A,B ∈ Inv∗(D).

Proof. Suppose that Inv∗(D) is a lattice ordered group. Then for every pair A,B ∈ Inv∗(D),

inf(A,B) ∈ Inv∗(D). Now we note that as (A + B)∗ ⊇ A,B and if C ∈ Inv∗(D) such that

C ⊇ A,B then C ⊇ (A+B)∗. Taking the duals we get (A+B)∗ = inf(A,B). Now (A+B)∗ ∈

Inv∗(D) means, in particular that the sum of every two ∗-invertible ∗-ideals is a ∗-invertible

ideal. Thus in particular the sum of every two nonzero integral principal ideals of D is ∗-

invertible. This makes D a ∗-Prüfer domain. Conversely suppose that D is ∗-Prüfer. Then, by

(vi) Theorem 2.2 of [1] the sum of every pair of ∗-invertible ideals is ∗-invertible. Thus for every

pair A,B ∈ Inv∗(D), (A+ B)∗ ∈ Inv∗(D). Now from the previous considerations it is easy to

see that for A,B ∈ Inv∗(D), (A+B)∗ = inf(A,B). �

Next let D be a ∗-PrĄfer domain for a star operation ∗ and suppose that Inv∗(D) satisfies

Conrad’s F-condition. Let us translate Conrad’s F-condition to ring-theoretic language for a

∗-PrĄfer domain. Note that (Inv∗(D))+ is the set of integral ∗-invertible ∗-ideals of the ∗-

PrĄfer domain D and A ∈ Inv∗(D) being strictly positive means A is a proper integral ideal

i.e. A � D. Also A,B ∈ Inv∗(D) being disjoint means (A + B)∗ = D, we may call A,B

∗-comaximal. So, recalling that ≥ translates to ⊆ in the ideal setup, Conrad’s F-condition

translates in ∗-PrĄfer domains to: Every proper integral ∗-invertible ∗-ideal is contained in at

most a finite number of mutually ∗-comaximal proper integral ∗-invertible ∗-ideals. The notion

of a basic element translates to a ∗-invertible ∗-ideal H such that every pair of proper ∗-invertible

∗-ideals containing H is comparable. Let us call the basic elements H ∈ Inv∗(D) the basic ideals

of D.

Now Inv∗(D) is more interesting in case ∗ is of finite character. So we shall, for now, look

into Inv∗(D) for a star operation ∗ of finite character. In this case we know that a ∗-PrĄfer

domain with ∗ of finite character is what is called a PrĄfer ∗-Multiplication Domain (P∗MD).

The beauty of this case is that each A ∈ Inv∗(D) (and hence in (Inv∗(D))
+) is a ∗-ideal of finite

type. So, every basic element of A ∈ Inv∗(D), in this case is a ∗-ideal of finite type.

The case of Inv∗(D), with ∗ of finite character, being lattice ordered satisfying Conrad’s F-

condition was first studied by Griffin in [14]. Recently it has been recalled in [27] to answer a

question posed by Bazzoni in [4, 5]. Next, the case of Inv∗(D), with ∗ of finite character, being

a Riesz group satisfying Conrad’s F-condition has been studied by Dumitrescu and Zafrullah [9]

for the so-called t-Schreier domains. Recall that D is t-Schreier if Invt(D) is a Riesz group.
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We shall study the effect of Conrad’s F-condition when, for ∗ of finite character, Inv∗(D)

is a pre-Riesz group and derive all the special cases of Inv∗(D) being a Riesz group or an l.o.

group. Using ∗s as a prototype of finite character star operations we shall study Inv∗s(D). Our

treatment will be ab initio, as in the case of G(D) pre-Riesz, and so new even for the known

cases. Let us, temporarily, call a domain D a ∗s-pre-Riesz domain if Inv∗s(D) is a pre-Riesz

group.

First let us note that as in the case of pre-Riesz G(D), an element H ∈ Inv∗s(D) will be

homogeneous if H � D and given any pair A,B ∈ Inv∗s(D) with H ⊆ A,B � D we must have

(A,B)∗s �= D. Next, as we have already seen, a pre-Riesz group satisfies Conrad’s F-condition

if and only if every strictly positive element exceeds at least one and at most a finite number of

mutually disjoint homogeneous elements (cf. Corollary 3.9). Translating, a ∗s-pre-Riesz domain

satisfies Conrad’s F-condition if and only if every proper ∗s-invertible ∗s-ideal of D is contained

in at least one and at most a finite number of mutually ∗s-comaximal homogeneous ideals of D.

So, as in the PSP domain case we aim to link the homogeneous elements to the maximal ∗s-ideals

of ∗s-pre-Riesz domains. But before that let us find a working characterization of ∗s-pre-Riesz

domains.

Proposition 5.7. Let D be an integral domain and let ∗ be a star operation on D. Then the

following are equivalent. (1) D is a ∗s-pre-Riesz domain, (2) for all A1, A2, ..., An ∈ Inv∗s(D)
+

with (A1, A2, ..., An)
∗s �= D there is a proper ideal A ∈ Inv∗s(D)

+ such that A1, A2, ..., An ⊆ A.

(3) for all A1, A2, ..., An ∈ Inv∗s(D)
+ with (A1, A2, ..., An)

∗ �= D there is a proper ∗s-invertible

∗s-ideal A with A1, A2, ..., An ⊆ A. (4) for all x1, x2, ..., xn ∈ D\{0} with (x1, x2, ..., xn)
∗ �= D

there is a proper ∗s-invertible ∗s-ideal A with (x1, x2, ..., xn) ⊆ A.

Proof. (1) ⇔ (2) is obvious because D being a ∗s-pre-Riesz domain means Inv∗s(D) is a pre-

Riesz group and (2) is the definition of a pre-Riesz group. Next (2) ⇔ (3) is direct because

A1, A2, ..., An are of finite type and so (A1, A2, ..., An)∗ = (A1, A2, ..., An)∗s . Also (3) ⇒ (4) is

obvious as xiD ∈ Inv∗s(D)
+, because every principal ideal is ∗-invertible for every ∗-operation.

This leaves (4) ⇒ (3). Let A1, A2, ..., An ∈ Inv∗s(D)
+. Since each of Ai is a ∗-ideal of fi-

nite type there are finitely generated ideals Bi such that Ai = B∗
i = (x1i, x2i, ..., xnii)

∗. Thus

(A1, A2, ..., An)
∗ = (

∑
(x1i, x2i, ..., xnii)

∗)∗ = (
∑
(x1i, x2i, ..., xnii))

∗. Now (A1, A2, ..., An)
∗ �= D

⇒ (
∑
(x1i, x2i, ..., xnii))

∗ �= D and this, by (4) implies that there is a proper ∗s-invertible ∗s-ideal

A with
∑
(x1i, x2i, ..., xnii) ⊆ A. But as A is a ∗-ideal we have (

∑
(x1i, x2i, ..., xnii))

∗ ⊆ A. But

as (A1, A2, ..., An)∗ = (
∑
(x1i, x2i, ..., xnii))

∗ we have the result. �

Proposition 5.7 shows that ∗s-pre-Riesz domains are nothing but the ∗s-sub-PrĄfer domains

studied in [8]. In [8] an indirect device was used to show that in a ∗s-sub-PrĄfer domain the

number of mutually disjoint homogeneous ideals containing a finitely generated ideal was linked

to the number of maximal ∗s-ideals containing that ideal. Here we aim to study, eventually,

the effect of Conrad’s F-condition on a ∗s-sub-PrĄfer domain, though we look, enroute, into

domains each of whose maximal ∗s-ideal contains a homogeneous ideal. This requires a look

into the nature of homogeneous elements.

Remark 5.8. If H is a homogeneous element of a ∗s-sub-PrĄfer domain D, then every proper

K ∈ Inv∗s(D)
+, with H ⊆ K, is homogeneous.
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Lemma 5.9. Let H be a homogeneous ideal of a ∗s-sub-PrĄfer domain D. Then the following

hold.

(1) If ideals H1,H2, ...,Hn are such that H∗s
i is proper of finite type for each i and all Hi ⊇ H

then there is a proper K ∈ Inv∗s(D)
+ such that K ⊇ Hi for each i. Moreover K is a homogeneous

ideal.

(2) The set P (H) = {x ∈ D\{0} : (x,H)∗s �= D} ∪ {0} is a maximal t-ideal of D.

Proof. (1) By Proposition 5.7 each of Hi is contained in some proper Ji ∈ Inv∗s(D)
+. We claim

that (J1, J2, ..., Jn)
∗s �= D. For if (J1, J2, ..., Jn)

∗s = D then by relabeling, if necessary, take T =

{J1, J2, ..., Jr} to be a maximal subset of S = {J1, J2, ..., Jn} such that J = (J1, J2, ..., Jr)
∗s �=

D. Of course J must be contained in a proper A ∈ Inv∗s(D)
+. But then for any Jk ∈ S\T

we must have (A,Jk)
∗s = D. But this contradicts the fact that H is homogeneous. Thus

(J1, J2, ..., Jn)
∗s �= D and there is a proper K ∈ Inv∗s(D)

+ such that K ⊇ Ji ⊇ Hi, for each i.

That K is homogeneous follows directly from the definition of homogeneous.

(2) We first establish that if x, y ∈ P (H) then x+ y ∈ P (H). For this note that (x,H)∗s �= D

and (y,H)∗s �= D. So there exist proper H1,H2 ∈ Inv∗s(D)
+ such that H1 ⊇ (x,H) and

H2 ⊇ (y,H). Now both H1, H2 are proper and contain H, there must be a proper K ∈ Inv∗s(D)
+

such that K contains H1,H2, hence x, y,H and hence x+ y and H. Thus x+ y ∈ P (H). Indeed

if (x,H)∗s �= D, then for each r ∈ R we have (rx,H)∗s �= D. To see that P (H) is a ∗s-ideal

let x1, x2, ..., xn ∈ P (H). Then Hi = (xi,H)
∗s are proper of finite type and contain H so, by

(1), there is a proper K ∈ Inv∗s(D)
+ such that (H1, H2, ...,Hn) ⊆ K. Now (x1, x2, ..., xn)

∗ ⊆

(H1,H2, ..., Hn)
∗ ⊆ K and K ⊆ P (H), because (K,H)∗s = K �= D. To see that P (H) is a

maximal ∗s-ideal note that x /∈ P (H) implies that (x,H)∗s = D. Hence there can be no prime

∗s-ideal properly containing P (H). �

Remark 5.10. If for H a homogeneous ideal M = P (H) then every proper J with J ⊇ H ∈

Inv∗s(D)
+, must be contained in M. Also if M is a maximal ∗s-ideal containing a homogeneous

ideal H, then M = P (H).

Lemma 5.11. Let D be a ∗s-sub-PrĄfer domain. Then H ∈ Inv∗s(D)
+ is a homogeneous

ideal if and only if H is contained in a unique maximal ∗s-ideal.

Proof. If H ∈ Inv∗s(D)
+ is homogeneous then there is a maximal ideal P (H) containing H.

Suppose that there is another maximal ∗s-ideal M containing H then since for each x ∈ M,

(x,H)∗s ⊆ M , (x,H)∗s �= D. But then x ∈ P (H). So M ⊆ P (H). Since M is assumed to be a

maximal ∗s-ideal we must have M = P (H). Conversely, suppose that H is contained in a unique

maximal ∗s-ideal M. Then for all proper A,B ∈ Inv∗s(D)
+ with A,B ⊇ H then A,B ⊆ M,

because M is the only maximal ∗s-ideal containing H, but then (A,B)∗s ⊆M. �

We now characterize the ∗s-sub-PrĄfer domains with maximal ∗s-ideals associated to homo-

geneous elements.

Proposition 5.12. Let D be a ∗s-sub-PrĄfer domain. If every maximal ∗s-ideal of D contains

a homogeneous ideal then for every ideal I with I∗s proper and of finite type is contained in a

homogeneous ideal of D. Conversely if every ideal I with I∗s proper and of finite type is contained

in a homogeneous ideal of D then every maximal ∗s-ideal contains a homogeneous ideal provided
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that the following condition holds: if a maximal ∗s-ideal M is contained in a union of any family

{Mα} of maximal ∗s-ideals then M =Mα for some α.

Proof. Suppose that D is ∗s-sub-Prüfer and that every maximal ∗s-ideal contains a homogeneous

ideal. Take an ideal I with I∗s proper and of finite type. Then I∗s and hence I must be contained

in a maximal ∗s-ideal M = P (H) where H is homogeneous. Then (I,H)∗s ⊆ P (H) and so

(I,H)∗s �= D. Thus by Proposition 5.7, there is a proper H1 ∈ Inv∗s(D)
+ such that H1 ⊇ I,H.

But as H1 contains H, H1 is homogeneous. That H1 is contained in P (H) follows from the fact

that for each x ∈ H1 we have (x,H) ⊆ H1 and so (x,H)∗s ⊆ H1 �= D.

Conversely suppose that every ideal I with I∗s proper and of finite type there is a homogeneous

ideal containing I. Let M be a maximal ∗s-ideal containing I and let {P (H)} be the set of all

the maximal ∗s-ideals each associated with a homogeneous ideal. Because, by the condition, for

each x ∈ M, x ∈ H for some homogeneous ideal we conclude that M ⊆ ∪P (H). We conclude

by the condition that M = P (H) for some homogeneous H. �

Theorem 5.13. Let D be a ∗s-sub-PrĄfer domain. Then Inv∗s(D) satisfies Conrad’s F-

condition if and only if every nonzero nonunit x of D belongs to at most a finite number of

maximal ∗s-ideals of D.

Proof. Recall from Corollary 3.9, that the pre-Riesz group Inv∗s(D) satisfies Conrad’s F-

condition if and only if every strictly positive element (proper integral ∗s-invertible ∗s-ideal of

D) exceeds (is contained in) at least one and at most a finite number of mutually disjoint ho-

mogeneous elements of Inv∗s(D) (ideals of D). So if Inv∗s(D) satisfies Conrad’s F-condition

then every proper integral ∗s-invertible ∗s-ideal, say A, is contained in at least one homoge-

neous ideal H and hence at least one maximal ∗s-ideal P (H) and at most a finite number

P (H1), P (H2), ..., P (Hn) of maximal ∗s-ideals associated with homogeneous ideals. Suppose

that n is the largest such number. We show that P (H1), P (H2), ..., P (Hn) are the only maximal

∗s-ideals containing A. For this let M be a maximal ∗s-ideal containing A and that M �= P (Hi),

i = 1, ..., n. Then there is x ∈ M\ ∪ P (Hi), i = 1, ..., n. Now (x,A)∗s is of finite type and

contained in M. Because D is ∗s-sub-Prüfer there is a ∗s-invertible proper integral ∗s-ideal K

containing (x,A)∗s and because of the F-condition there is a homogeneous ideal L containing

K ⊇ A. But then there is one more ∗s-maximal ideal P (L), associated with a homogeneous

ideal, that contains A, a contradiction. Since for every nonzero nonunit x ∈ D, xD is a proper

∗s-invertible ∗s-ideal we have the result.

Conversely suppose that every nonzero nonunit of D is contained in at most a finite number of

maximal ∗s-ideals. Let M be a maximal ∗s-ideal and let x ∈M\{0}. Let {M,M1,M2, ...,Mn} be

the set of all the maximal ∗s-ideals of D containing x. Since M �=Mi there are xi ∈M\Mi. Set

A = (x, x1, x2, ..., xn). Clearly A∗s ⊆M and by the construction of A, M is the only maximal ∗s-

ideal containing A∗s . Also A∗s �= D and D being ∗s-sub-Prüfer there is a proper H ∈ Inv∗s(D)
+

such that A∗s ⊆ H. Now H is a ∗s-invertible ∗s-ideal contained in a unique maximal ∗s-ideal M,

H is homogeneous. Thus every maximal ∗s-ideal of D contains a homogeneous ideal and hence

every maximal ∗s-ideal is associated to a homogeneous ideal. Next as every principal ideal is

contained in at most a finite number of maximal ∗s-ideals implies that every ∗s-invertible ∗s-

ideal, being of finite type, is contained in at most a finite number of maximal ∗s-ideals. Next as

every maximal ∗s-ideal M = P (H) for some homogeneous ideal H, for a ∗s-invertible ∗s-ideal
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A ⊆ P (H) we have (A,H)∗s ⊆ P (H) and so by the ∗s-sub-Prüfer property there is a ∗s-invertible

∗s-ideal K ⊇ (A,H)∗s and this K is obviously homogeneous. Thus A being contained in at most

a finite number of maximal ∗s- ideals translates into A being contained in at most a finite number

of mutually ∗s-comaximal homogeneous ideals. �

As we have already mentioned, an integral domain D is called a PrĄfer ∗-multiplication

domain (P∗MD) if ∗ is of finite character and if every nonzero finitely generated ideal of D

is ∗-invertible. According to Griffin [14] D is a PVMD (i. e., ∗ = t) if and only if DM is a

valuation domain for each M ∈ t − max(D). Using similar arguments one can show that for

a star operation ∗ of finite character, D is a P∗MD if and only if DM is a valuation domain

for every maximal ∗-ideal M [15]. Repeating “star operation of finite character" over and over

again may be a bit cumbersome. So as before we resort to the convention of using ∗s, for any

star operation ∗, as the prototype of a star operation of finite character we shall call D a P∗MD

if every nonzero finitely generated ideal of D is ∗s-invertible. So by a P∗MD we shall mean a

∗s-PrĄfer domain. Now by Proposition 5.6, D is ∗s-PrĄfer if and only if Inv∗s(D) is an l.o.

group. Similarly we can call a domain a ∗-Schreier domain if Inv∗s(D) is a Riesz group. Now

as a pre-Riesz group is a generalization of both the Riesz and l.o. groups the results proved for

pre-Riesz groups also hold for both Riesz and l.o. groups. In the same vein results proved for

∗s-sub-PrĄfer domains hold for both ∗s-Schreier domains and ∗s-PrĄfer domains.
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