ON GENERALIZED DEDEKIND DOMAINS

MUHBAMMAD ZAFRULLABH

Throughout this note the letters I} and K denote a commutative integral
domain with 1 and its field of fractions.

Let F(D) denote the set of non-zero fractional ideals of D. For A, Be F(D)
it is not generally true that (AB)'=A"'B~'. So it is natural to ask for a
characterization of intergal domains satisfying,

(GD) for all A, Be E(D); (AB) '=A""B™".

We show that an integral domain D satisfies (GD), if, and only if, for each
Ac F(D) the ideal A, = (A" ") 'is invertible. It is easy to see that a Dedekind
domain satisfies (GD) and for this reason we call the integral domains satisfying
(GD), generalized Dedekind domains (G-Dedekind domains).

The examples of G-Dedekind domains range from UFD’s and locally
factorial Krull domains to the ring of entire functions and rank one valuation
domains with complete value groups. The G-Dedekind domains are similar
to the Dedekind domains in that they are completely integrally closed and
locally GCD-domains and different in that a quotient ring of a G-Dedekind
domain may not be a G-Dedekind domain and a ring of polynomials over a
G-Dedekind domain is again a G-Dedekind domain.

In studying the G-Dedekind domains we shall use the notion of v-operation.
To ensure convenience and completeness we include some preparatory remarks
about the v-operation and related notions.

Let F(D) denote the set of non-zero fractional ideals of D. Associated to
each Ae F(D) is the fractional ideal (A™") "' = A,. The map A~> A, on F(D)
is a *-operation called the v-operation. The reader may consult Sections 32 and
34 of [4] for the definition and properties of *-operations. For our purposes we
note the following. Let A, Be F(D) and let xe K —{0}. Then

(1) (xD),=xD, (xA), = xA,,

(2) Ac A, and if A< B then A, < B,,

(3) (Av)s=A,,

(4) (AB),={(A,B),=(A,B,),, we shall refer to these equations as defining
v-multiplication,

(5) AN =(A,) '=(4"N),.

An ideal Ac F(D) is called a v-ideal if A= A,, and a v-ideal of finite type
if A= B, for some finitely generated Be F(D). An ideal A is called a t-ideal
if A= F,, where F ranges over finitely generaied D-submodules of 4. A
v-ideal is a #-ideal. An integral ideal maximal with respect to being a t-ideal
is called a maximal i-ideal. A maximal t-ideal is a prime ideal (cf [2]; Cor.
1to Th. 9, p. 30).
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Obviously an inveriible ideal is a »-ideal and hence a t-ideal. Further,
Ae F(D) is called v-inverrible il there exists B¢ F(D) such that (AB),=D
It is well known that if, for all A F(D), A is v-invertible then D is completely
integrally closed ([4], Th. 34.3). Futther, 7 is said to be a Mori domain if the
set of integral v-ideals of D satisfies ascending chain condition. According
to Querre {[11], Th. 1) an integral domain D is a Mori domain, if, and only
if, for all A€ (D), there exists a finitely generated Be F(D) such that B A
and A, = B,. 1t is well known thai a completely integraily closed integral domain
is a Krull domain, if, and only if, it is Mori (¢f e.g. [4], Ex. 15, p. 556).

An integral domain D is called a Priifer v-multiplication domain (PYMD)
if the set H(D) of v-ideals of finite type of D is a group umder the
v-multiplication described in (4) above. In particular, Krull domains are
PYMD’s. According to Griffin ([5], Th. 5) D is a PYMD, if, and only if, for
every maximal 7-ideal P of D, Dp is a valuation domain. An integral domain
D is called a *-domain if, for all xq,..., % Y1, ..., Vs € K —{0}, we have

Sl

(ﬂ (X;))(ﬂ (};)) =) (X,-y,-)ﬁ

We shall call D locally X to indicate the fact that for each maximal ideal M,
Dy, has the property X. It was shows in [17] that D is a =-domain, if, and
only if, it is locally a *-domain. Also indicated in [17] was the fact that a
GCD-domain is a *-domain. Hence a locally GCD-domain is a *-domain.
According to [17] a2 PYMD is a locally GCD-domain, if, and only if, it is a
x-domain (Cor. 3.4). So a Krull domain is locally factorial, if, and only if, it
is a *-domain. Finally a prime ideal P of D minimal over an ideal of the type
(a):(b) # D) is called an associated prime of D. According to ([18], Cor.
3.3) an integral domain D is a locally factorial Koull domain, if, and only if,
every associated prime of D is invertible.

This note is split into two sections. In the first section we include the basic
theory and some rather obvious examples and counter examples. We first
prove that, for Ae F(D), A, is invertible, if, and only if, for all Be F(D),
(AB) '=A"'B" (Lemma 1.2). Using this we can easily show that D is a
G-Dedekind domain, if, and only if, for all Ae F(D), A, is invertible. We
also indicate that a G-Dedekind domain is completely integrally closed (Cor.
1.4). Because every v-ideal in a G-Dedekind domain is invertible, every v-ideal
of finite type is invertible and so a G-Dedekind domain is a generalized GCD
(GGCD-) domain of [1]. This leads to the question, “What are the integral
domains for which (AB) "= A7'B™" for all finitely generated A, Be F(D)?”
The answer (Prop. 1.6) is that these are precisely the #-domains. We also show
in this section that the ring of polynomials over a G-Dedekind domain is a
G-Dedekind domain (Th. 1.2). We close this section with a list of equivalent
conditions for an intergal domain to be a G-Dedekind Krull domain (Th.
1.10). Some of these conditions are: (1) I is Mori and a x-domain (2) every
associated prime of D is invertible (3) every #-ideal of D is invertible and (4)
D is a Krull domain such that the product of every two v-ideals is again a
v-ideal.

In the second section we include some interesting examples and some
questions. We show that the ring of entire functions is a G-Dedekind domain
(Ex.2.1), and use the fact that some quotient rings of the ring of entire functions
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are not compietely integrally closed to deduce that a quotient ring of a
G-Dedekind domain need not be a G-Dedekind domain (Cor. 2.3). We also
show, using the faci that there is a one to one correspondence between the
non-zerc ideals of a valuation domain and the upper classes of the Dedekind
cuts (¢f [14], p. 10) that 2 rank one valuation domain with a complete group
of divisibility has the property that, for all Ae F(D), A, is principal (Th. 2.6).
So a valuation domain with the set of reals (under addition) as its group of
divisibility is an example of 2 G-Dedekind domain. We also show that a
valuation domain with the set Q@ of rational numbers (under +) as its group
of divisibility is not a G-Dedekind domain (Ex. 2.7). For the questions the
reader will have to turn to the last pait of this section; as some of the questions
need some motivation which cannot be provided here.

§1. Basic theory and examples. Having dealt with the introduction and
motivation already, we start this section with the statement of the following
theorem.

1.1, TugoraeM. An integral domain D is a G-Dedekind domain, if, and
only if, for all Ae F(ID), A, is invertible.

Instead of proving this theorem as it is, we prove 2 more general resuli in
the form of a lemma.

1.2. LEMma. Lei Ac F(i2). A, is inversible, if, and only if, (AB) '=
AT'BY, for all Be F(D).

Proof. We note, to start with, that if, for all Be F(D), (AB) '=A"'B"’
then (A, B) "= A"'B . This follows from the fact that (AB) '=((4B),) ' =
((AB),) ' =(A,B)"".

Now let Ae F(D) and suppose that A, is invertible. Then A,A7' = D. Let
Be F(D) and let xe (AR)™". Then xAB< D and so xA< B™'. Because B’
is a v-ideal we have xA, < B~'. Now multiplying both sides by A™' we get
xe ATTRT. Mowlet xe A7 B! Bacause A, is invertible we get, on multiply-
ing both sides by A,, x4, < B~' and so xA,B < D which gives xe (A, B) ' =
(AB)™'. From these considerations it follows that, if A, is invertible, then
(ABY '=A"'B"" for all Be F(I).

Conversely suppose that for all Be F(D), (AB) '=A7'B™". Then
(AR '= AR " toc. Now put B=4 " Then

(AA D =(A) (A =AT'A, = A4

Now as A '=A," we have A,A7'c D and so (4,4 ) ' D But then
(A,A Y = A,A7 forces A4 = D, which means that 4, is inveriible.
Recalling that an inveriible ideal iz a v-ideal we make the following

statement.

1.3. CoroLLaRY. An ideal Ac F(D) is invertible, if, and only if, A is a
v-ideal and, for all Be F(D), (AB) '=A""B""
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After the rather straight-forward characterization of G-Dedekind domains
we proceed to determine some of their multiplicative properties.

I.4. CoroLLAaRY. A G-Dedekind domain is completely integrally closed.

Proof. Let D be G-Dedekind. Then, for all AeF(D), (A4A™"), =
(A,A7"), =(D),=D, and so every non-zero ideal of D is v-invertible. This,
as we have already indicated means that D is completely integrally closed.

The proof of the following corollary has been indicated in the introduction,
1.5. CoroLLarY. A G-Dedekind domain is a GGCD-domain.

According to [1] 2 GGCD-domain is locally a GCD-domain. So a G-
Dedekind domain is locally GCD and hence a *-domian. According to ([17],
Cor. 3.4) D is a GGCD-domain, if, and only if, it is 2 PYMD and a *-domain.
Thai a G-Dedekind domain is both a PYMD and a *-domain can also be
derived from the definition. For the PYMD property we note that, for every
Ae F(D), A7 is finitely generated and so the same is true for finitely generated
A. For the *-property on the other hand we state the following simple
proposition.

1.6. ProposITION. An integral domain D is a *-domain, if, and only if,

Jor all finitely generated A, Be F(D), (AB) '=A"'B '=(A4,8,)"".

Proof. Let A={(a;,...,a,)and B=(h,,..., b,)bein F(D). Then AB=
(a:by,...,ab,...,a,b,). Nowif A7'B™'=(AR)™" we have

(Y (/a1 (1/5,)) =M (1/(a:by))

and selecting suitable A, B we can show that, forall sets x,, ..., X ¥1, ..., Vn €
K —{0}, we have ([ (x))(() (J’_,‘)) =) (x3;7).

Conversely if D is a *-domain then, for all x;, y;€ K —{0}, we have
(Y ENM ) =M (xp,). So, for A and B as above, we have A 'B '=
(Y (1/a)) () (1/b;)) and by the *-property this becomes () (1/(ab) = (AB)™".

The proof will be complete once we note that

(AB) ' =((AB),) " =((A,B,),) "=(A,B,)""
for all A, Be F(D) and for every integral domain D.

The above proposition leads to an interesting characterization of GGCD-
domains.

1.7. CoroLLarY. An integral domain D is a GGCD-domain, if, and only
if, D is a *-domain and, for all finitely generated Ac F(D), A™" is of finite iype.

Proof.  The “only if” part is obvious. For the “if” part all we have to
show is that for all finitely generated Ae F(D), A, is inveitible . . . given that
D is a *-domain and A~ is of finite type. So let A be finitely generated and
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let A7'=B, where B is finitely generated. We note that (4,A7") 7 '=
(AA™)'=(AB) " and by the *-property (and Prop. 1.6) (AB) '= A" 'B7' =
ATV A,. This gives (4,4 ") "= A,A™" and hence, as in Lemma 1.2., we have
AA =D

The above considerations lead to a rather interesting set of characterizations
of G-Dedekind domains.

1.8. ProprositioN. For D the following are equivalent,

(1) D is a G-Dedekind domain.

(2) D is completely integrally closed and for all A,Be F(D), (AB), = A,B,.
(3) For every ideal Ac F(D), A, is of finite type and D is a *-domain,

Proof.  (1)=>(2). Because D is a G-Dedekind domain it is completely
integrally closed (Cor. 1.4) and because for all A, Be F(D), (AB) ' =A"'R™!
we have

(AB),=((AB) ) '=(AT'B) "= 4,8,

(2)=(1). Let Ac F(D). Then as D is completely integrally clesed
(AA™"),= D ([4], Th. 34.3). But by (2) (AA™"), = A (A "), =A,A". So for
each Ae F(D), A, is invertible and hence, by Th. 1.1, D is a G-Dedekind
domain.

(1)=>(3). A G-Dedekind domain is a *-domain and because, for every
Aec F(D), A, is invertibie it is of finite type.

(3)=>(1). Note that (AB) "=(A,B,) " for all A, Be F(D). By (3) each
of A,, B, is of finite type and by (3) again (and Prop. 1.6) (A,B,) '=A,'B,' =
AT'B7'. But (AB,) '=(AB) .

The first step towards examples of a class of integral domains is to see if
the class is closed under quotient ring and polynomial ring formations. We
shall give an example in the next section to show that if D is a G-Dedekind
domain and S is a multiplicative set in D then it is not necessary that Dg
should be a G-Dedekind domain. For polynomials we state the following
result.

1.9. TuEorEM. If D is a G-Dedekind domain and X is an indeterminate
over D, then D[ X] is again a G-Dedekind domain.

Proof. It is sufficient to show that every imtegral v-ideal of D[X] is
invertible. For this let A be an integral v-ideal of D[X]. Then, as D is
integrally closed, according to Querre ([12}; Lemme 3.2), if An D # () we
have An D a v-ideal of D such that A=(An D) X], and if An D =(0) we
have A= fA,[X] for some fc D[X] and for some v-ideal A, € F(D).

Mow it is easy to see that if F is an invertible ideal in F(D) then F[X]
is invertible. So, using the fact that every v-ideal of D is invertible we can
conclude that A={An D) X](forAnD#(0)and A=fA[X](forAnD=
(0)) are both invertible.

Theorem 1.9, not only acts as an example schema but also it acts to
differentiate G-Dedekind domains from Dedekind domains. For if D is a
Dedekind domain then D[X] is not Dedekind but it is G-Dedekind.
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A G-Dedekind domain which is Kyull, Mori or MNoetherian becomes a
locally factorial Krull domain, generally known as a w-domain (cf [4] and [3]).
In the following we list a set of equivalent conditions under which an integral
domain becomes a w-domain.

1.10. TasoreEM. The following are equivalent for an integral domain D.
(1) D is a G-Dedekind Krull domain,
(2) D is G-Dedekind and Mori.
(3) D is Krull and locally factorial.
(4) D is Krull and a *-domain.
(5) D is Krull and, for all a, b, ¢, d € D —{0},

((a) A (B))({(c) N (d)) = (ac) ~ (ad) A (be) N (bd).

(6) D is Mori and locally factorial.

(7) D is Mori and a *-domain.

(8) D is Mori and GGCD.

(9) every t-ideal of D is invertible.
(10) every associated prime of D} is invertible.
(11) D is Krull such thai the product of any two v-ideals is again a v-ideal
(12) D is G-Dedekind, every quotient ring of D is G-Dedekind and every

rank one prime ideal of D is invertible.

Proof. We shall prove the equivalence of (1)-(11) using the usual cyclic
scheme. Then we show that (1,4, 10)=(12) and (12)=(10).

(1)=(2). Obvious because Krull is Mori.

(2)=>(3). Because a G-Dedekind domain is completely integrally closed
and because a completely integrally closed Mori domain is Krull we conclude
that D is Krull. Now being G-Dedekind D is GGCD and hence locally GCD
(¢f [1]). Being Krull and locally GCD makes it locally factorial.

(3)=(4). Obvious because a locally GCD-domain is a *-domain.

(4)=>(5). This is obvious ico.

(5)=(6). According to ([2], Th. 3.8) (5) implies that D is locally factorial
and locally factorial Krull implies locally factorial Meori.

(6)=>(7). The property of being locally GCD implies the *-property.

(7)=(8). Because D is Mori, for each A€ F(D), A, is of finite type. Now,
by Proposition 1.8, D is G-Dedekind and hence GGCD.

(8)=>(9). We note that in a Mori domain every i-ideal is a v-ideal. This
foliows from the fact that in a Mori domain for every Ae F(D) there is a
finitely generated B< A such that A,=B,. Now A,2A,={JF, where F
ranges over finitely generated D-submodules of A. But then B is a finitely
generated D-submodule of A. S0 A,2 A4, =\J F,2 B, = A, which gives A, =
A, for all Ae F(D). Now by the GGCD property every v-ideal of finite type
is invertible and by the Mori property every f-ideal is a v-ideal of finite type.
So, for all Ae F(D), A, is invertible.

(9)=>(10). This follows directly because every associated prime is a ¢-ideal
(¢f [16], p. 1703).

(10)=(11). According to ([10]. Cor. 3.3), (10) holds, if, and only if, D is
a locally factorial Krull domain; that is, if, and only if, D is a * and a Krull
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domain. But in a Krull domain, for every A< F{D), A, is of finite type swhile
the *-property implies (AR} "= A, B, or (AB) "= A7'B ! for all A, Be
F(D).

(11)=(1). Being Krull, I? is completely int
(2) of Proposition 1.8 applies.

(1,4,10)=(12). Suppose that D is G-Dedekin
Krull *-domain (4). Because every quotient ting of a Kruil 2
is Krull and *, every guotiest ring of 2 is G-Dedekind and by (3
one prime ideal is invertible.

(12)=>(10). Since D is G-Dedekind it is a PVYMD and so for every maximal
t-ideal P of D, Dy is a valuation domain. Further, since every quotiont ting
is G-Dedekind the valuation ring Dp must be of rank one. So every maximal
t-ideal of D is of rank one. Consequently every asscciaicd prime, being 2
t-ideal and hence being contained in a maximal #-ideal, must be of rank one.

So every rank one prime is invertibie implies that every associated prime is
invertible and this is exactiy (10).

ally clased and now part

§2. Some interesting examples, counter examplesy and questions.
2.1. Example. The ring R of entire functions is a G-Dedekind domain.,

Hiusiration. Let f(z) be an entire function and let Z, denote the algebraic
set of zeros of £ The set Z; is algebraic in the sense that if f has »n z
z then z appears in £, n times. It is well known that if £ is an algebraic set
then there exists an entire function f such that Z = Z,. We note that an entire
function which has no zeros is a unit and so we take &= 2, .

Let A be an ideal of R. Then according to Hensiksen {81, A is fixed if
Z=(\Z;# (where f ranges over A) and free if Z =( ) Z, = (f ranges
over A). If [ Vrea Z# O then there exists g € R such that { )jca Z; = Z, and
obviously g|f for all fe A. According to Helmer ([7], Th. 7) g=GCD
(f|fe A). If on the other hand (. Z; =& we conclude that there is no
non-zero non-unit common factor of members of A and so 1 = GCD(f| fe A);
in this case.

Now because R is a Bezout ring (every finitely generated ideal is principal
(Helmer [7], Th. 9)) and because every fractional ideal A can be written as
A= B/x where B is integral, to show that R is G-Dedekind it is sufficient to
show that, for every integral ideal B of R, B, is principal. To do this we prove
a slightly more general result; noting that a Bezout domain is GCD too.

27 (s at

2.2. LemmMa. Let D be a GCD-domain and let A be a non-zero integral
ideal of D. Then A, ={( Yacxp xD.

Proof. By definition A, ={ )ac(x/yp (x/¥)D, where x, ye D—{0}. Now
because D is a GCD-domain we can assume each pair x, v coprime. But then
A< (x/y)D implies yA S xD which in turn implies that A< xD and indeed
as xD < {x/y)D we can discard (x/y)D and conciude that 4, =( Jacxp XD.
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S0 if g=GCD (A) then, for all xe R —{0} with 4 < xR, we have x|g and
so xR2gR. Whence it follows that A,=( )ic.r xR=gR Further if
GCD (A)=1 then A, =( )sc.r xR implies that A, = R. This completes the
illustration.

In [15] an exercise from ([4], Ex. 20, p. 432) was brought to life and it
was shown that, if A is a finitely generated ideal of D, then (ADs), = (A, D),
Using this result it can be shown easily that if A is a v-ideal of finite type,
that is, if A= B,, where B is finitely generated, then {ADg), is a v-ideal of
finite type. For ADg= B,Ds and (ADs), = (B,Ds), = (BDs),. It is natural to
ask if there is an example of a fractional ideal A such that (ADg), # (A,Ds),.
The answer is that the ring of entire functions affords infinitely many such
examples. To take as one example let P be a non-maximal prime ideal of R
of rank greater than one and let M be a maximal ideal containing P. Because
R is Bezout it can be shown that R, is a valuation domain and PR, 1s a
non-maximal prime of R,;. Butthen PR, is the intersection of all the principal
ideals containing it and hence is a v-ideal and obviously PR, is not principal.
But P, is principal and so is (P,Ry;),. Now a principal ideal connot be equal
to a non-principal ideal.

To draw another interesting indirect conclusion from Example 2.1, we
recall that a G-Dedekind domain is completely integrally closed. So if an
integral domain is not completiely integrally closed it cannot be G-Dedekind.
Consequently, no valuation domain of rank greater than one can be a G-Dedekind
domain. Now the ring R of entire functions does have prime ideals P which
are of rank greater than one. And because R is a Bezout domain, Ry is a
valnation domain of rank greater than one. This leads to the now obvious
conclusion.

2.3. CoroLLARY. If I is a G-Dedekind domain it is not necessary that a
ring of quotients of D should aiso be a G-Dedekind domain.

MNow we prepare to give an example of a G-Dedekind domain which is a
non-discrete rank one valuation domain.

Let G be a totally ordered group. A subset H of G* is called an upper
class of positive elements, if, for all he H, k> h implies ke H. Let v be a
valuation on a field K let V be its ting and let G(V) be it group of divisibility
(or value group). It is well-known that there is a one—one correspondence
between 7(V) the set of non-zero integral ideals of V and C(G(V)) the set
of upper classes of positive elements of G( V) (cf. Schilling [14], p. 10). This
correspondence is given by A—v(A)={v(a)|a e A}. If vis of rank one, G(V)
can be regarded as a subgroup of the group of real numbers under addition
(Schilling [14], Th. 1, p. 6). A lattice ordered group G is said to be complete,
if, for every subset S (of G) which is bounded from above (below), sup (S)
(inf (5)) belongs to G. Now G( V) being totally ordered is laitice ordered and
so its being complete or non-complete can be considered. Obviously if v is of
rank one for every integral ideal A, v(A) is bounded from bejow and so has
an infimum in R the set of reals and this inf (v(A)) may or may not belong to
G(V). If however G(V) is complete inf (v(A)) belongs to G(V) for every
non-zero ideal A.
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2.4. LEmMa.  Let V be a rank one valuation domain and let A be a non-zero
integral ideal of V. If inf (v(A)) =0 then either A=V or A= M the maximal
ideal of V.

FProof. Clearly, forall ac A, v(a)=0 and if 0=inf (v(A)) € v(A) we have
le A and so A= V. If on the other hand 0=inf (v(A)) €v¥(A) then, for all
x € M, there exists y € A such that y|x. For if not and if, for some x € M, there
exists no yc A such that y|x then, for all ae A, v(a)>v(x)>0 and this
contradicts inf (v(A))=0. So, for all x € M, there is y € A such that y|x. But
this means that M c A.

2.5. LemMa. Let V be a rank one valuation domain with a complete value
group G(V). Then, for every non-maximal non-zero integral ideal A of V, A= xM
or A=xV.

Proof. 1f A is a proper ideal of V then, for all ae A, v(a)>0. Now, by
the completeness of G(V) and by Lemuma 2.3., there exists re (G(V))" such
that 0 <r=inf(v(A)). So there exists xe M such that v(x)=r and A< xV,
and there is no ideal between A and xV. (For if there were an ideal between
A and xV then r#inf (v(4)).) Now A/x< V and inf (v(A/x)) =0. But then,
by Lemuma 2.3, A/x=V or A/x=M.

2.6. TueorEM. Let V be a rank-one valuation domain with a complete
value group G(V). Then, for every integral non-zero non-maximal ideal A of
V, A, is principal and hence V is a G-Dedekind domain.

Proof. There are two cases: V is discrete or V is non-discrete. If V is
discrete every ideal of V is principal and we have nothing to prove. If V is
non-discrete then the maximal ideal M of V is such that M™'=V and so
M,=V. MNow if A is non-maximal then, by Lemma 2.5, A=xV or A=xM
and this gives A, =xV.

It is easy to see that in a valuation domain (in fact in any Priifer domain)
every non-zero ideal is a f-ideal ... because every finitely generated ideal is
principal (invertible) and hence a v-ideal. If the maximal ideal is non-principal
it is a good example of a r-ideal which is not a v-ideal. But if the set of real
numbers is the value group of V we can give elementary examples of ¢-ideals
A such that A, is principal and A, # A. One simple example could be, for
any real » >0, the ideal A={ae V|v(a)>r}, and it is easy to see that A, = bV
where b is such that v(b)=r.

This discussion will be incomplete if we did not give an example of a
non-principal v-ideal in a rank one valuation domain.

2.7. Example. Let V be a valuation domain with value group G(V) equal
to @ the set of rationals under addition. Then (a) V has integral ideals A
with A, principal and (b) V has integral ideals B with B, non-principal and
B,=B.

Hlustration. For (a) we have A={xe V|v(x)>2}. Because inf (v(4)) =
2# v(A), A is non-principal. Further, because 2 e G( V) there exists x ¢ V such
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that v{x)=2 and so A< xV and there is no ideal beiween A and xV. Con-
sequently A/x < V and inf (v(A/x)) =0, which gives A=xM and so 4, =xV.

For (b) let B={xe V|(v(x))*>2}. Then inf (v(B))cR—Q. Since Vis a
valuation domain all the principal ideals which are not contained in B contain
B. So if xZ B then B2 xV and B, < xV that is, if there is y € B, — B, then
B,=yV. Clearly ¥(y)><2. For if W(y)*>2 then ye B and v(y)*=2 is not
possible. But as Q is dense in R, there exists r € Q such that v(y) <r<+/2 and,
because Q is the value group of V, we have a € V such that v(a) = r. But then
v(a)>v(y) implies that v(a) € v(B,) and that a € B,. Further because v(a) <2
we have a € B, — B and this means that B, = aV also. Thisleadsto B, =yV =aV
where ¥(y) # v(a) which is an obvious contradiction. From this we conclude
that B, = B.

Turning to the problems and questions we note that a quotient ring of a
G-Dedekind domain is not necessarily a G-Dedekind domain. So we do have
the following problem.

2.8. Problem. Characterize G-Dedekind domains whose quotient rings
are also G-Dedekind domains.

Obviously in such a G-Dedekind domain D every prime t-ideal P is of
rank one and D5 is a rank one valuation domain with a complete value group.

To staie the next problem we need to prepare a bit. An integral domain
D is called a ring of Krull type [6] if it has a family ¥ ={P},.; of prime ideals
such that:

(1) D= M Dy,

(2) for each ie I, Dy is a valuation domain; and

(3) each non-zero non-unit of D belongs to only a finite number of P,.

A ring of Krull type is called a generalized Krull domain (GKD) if its
defining family of prime ideals consists of rank one primes alone. GKD’s were
studied by Ribenboim [13]. According to Proposition 21 of [6] a completely
integrally closed ring of Krull type is a GKD. Further it is easy to show thait,
if D is a GKD, then so is D[ X ], where X is an indeterminate over D. Now
the existence of a non-discrete valuation domain with a complete value group
establishes the existence of G-Dedekind domains which are GKD’s and not
Krull. Moreover the fact that if D is G-Dedekind then so is D[X] ensures
that there is a plenty of such examples.

2.9. Problem. Characterize G-Dedekind GKD’s.

2.10. Question. Is it true that the G-Dedekind domains of Problem 2.8
are GKID’s? (The answer seems to be no, but this author cannot think of an
example at present.)

2.11. Question. Let p be a prime element in 2 such that [ )(p") = (0) and
let S={p"}. U Dsis a G-Dedekind domain (or a GGCD- or a *-domain)
is D a G-Dedekind (or a GGCD- or a *-) domain?

If the answer to any case of Question 2.11 is in the affirmative and simple
it will provide a simple proof of the fact that a regular local ring is a UFD.
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