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ON PRUFER v-MULTIPLICATION DOMAINS
Joe L. Mott and Muhammad Zafrullah

Priifer v-multiplication domains, abbreviated
PYMD's, have among their special cases a variety of
notions, including Krull domains, Priifer domains, GCD
domains, and unique factorization domains. The special
cases of PYMD's have been the subject of many studies
while PVMD's, in general, have received relatively 1it-
tle attention. We attempt to bridge this gap in this
paper.

To give a better idea of our results, we include
the following notions and notations.

Throughout, the letters R and K denote a commu-

tative integral domain and its field of fractions re-
spectively.

Let F(R) denote the set of fractional ideals of
R . Associated to each A ¢ F(R) 1is the fractional
ideal {ﬂ'T]'] 5 Av . The map A A, , on F(R), 1s a
*-operation called the v-operation. The reader is re-
ferred to sections 32 and 34 of [6] for the definition
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and properties of *-operations. However for our pur-
poses we note the following.

Let A, B € F(R) . Then <
0.1 AcA, (A?}? =A, and R =R,
0.2 Ac B implies A c B ,
0.3 if A 1is principal then EAB}u = Aﬂv'
0.4 F(R) is closed under the v-multiplication:

(AB), = (AB), = (A, B, .

A fractional ideal A 1is called a v-ideal if
A= Av . Moreover, a v-ideal is of finite type if there
is a finitely generated fractional ideal B such that
- Eu . Finally, we can take R to be the identity

element of F(R) whereas F(R) 1is a semigroup under
the operation defined in 0.4.

Let H(R) denote the set of v-ideals of R of
finite type. Then R s a PYMD if H(R) is a group
under the v-multiplication defined in 0.4.

We obtain a simpler definition of PVMD by intro-
ducing the notion of P-domain. Recall from [2], that a
prime ideal P of R 1is an associated prime of a prin-
cipal ideal aR , if P is minimal over (aR: bR) for
some b € R - aR . For brevity we shall call P an
associated prime of R . Then we say that R 1is a P-
domain if R satisfies the following property:

(P). For every associated prime P of R, HP is a
valuation domain.

In section 1 we study P-domains and show that a
PYMD is a P-domain. Then in section 2 we construct an
example to show that a P-domain is not necessarily a
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PVYMD. In section 3 we show that a P-domain is a PVMD
if and only if for each pair a, b £ R there exists a
finitely generated ideal A such that aR n bR = Rﬂ :
Also in section 3 we give other characterizations of a

PYMD .

By an overring of R we mean a ring between R and
K. A valuation overring V¥ of R 1is called essential
if Y= RP . A prime ideal P 1is called an essential
or a valued prime if RP is a valuation domain. In
section 4 we study the valued primes of PVYMD's and show
that they are nothing more than the prime t-ideals.
Sheldon [14] made a similar study for GCD-domains. It
is well known that if R 1is a Krull domain then any

overring T of the form T = r;RP , Wwhere Pu ranges
o
over a set of height one prime ideals of R , is also a

Krull domain. In section 5 we show that if R 1is a

PYMD and T = r1RP » Where P, ranges over a set of
a

valued primes of R , then T 1is a PYMD. We study the
relationship between PYMD's and GCD-domains in section
6. Moreover, we derive an equivalent form of Hasse's
criterion for PID's and show that there is an analogous
form for UFD's . Finally in section 7 we discuss some
generalizations of Krull domains.

1. INTEGRAL DOMAINS WITH PROPERTY P

Recall that an integral domain R 4s called es-
sential if it can be expressed as an intersection of
essential valuation overrings of itself.

PROPOSITION 1.1. The following conditions are
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equivalent for an integral domain R .

(1) R is an essential integral domain such that every

quotient ring of R is also essential. o
(2) R is a P-domain.

PROOF. (1) = (2) . Suppose that M is a prime
ideal minimal over aR: bR . Then by (1), Ry 1s es-
sential and by a theorem of Tang (Theorem E of [15] or
exercise 22, p. 52 of [6]) and by Proposition 4 of [2]
aHH: bﬂH is contained in at least one valued prime PRM
of RM . But then it follows from the minimality of M
that P=M and M 1is a valued prime of R .

(2) = (1) . Let {Pu} be the family of associated

primes of R . Then R = F1RP and

L
Rg = r.-[ﬂpuwu ns=d¢ (cf. [2]). By (2), each P
is essential and RS is essential.

COROLLARY 1.2. Let S be a multiplicitive set in
R and let X be an indeterminate over R . If R has
property P then so do RS and R[X] .

PROOF, That HS has property P is clear from the
proof of Prop. 1.1 . For the second part we show that
(2) of Proposition 1.1 holds for R[X] . Let P be an
associated rrime of R[X] . If PR =0 then it is
obvious that R[H]FI is a valuation domain. If, on the
other hand, PR # O then, by Corollary & of [2],

P = p[X] where p is an associated prime of R and
hence is a valued prime. That R[ilp[x] is a valu=-
ation domain is now easy to verify.

COROLLARY 1.3. The following are equivalent for an
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integral domain R .

(1) R has property P .

(2) Every guotient ring of R has property P . §
(3) For every prime ideal P af R, RP has property

P.
(4) For every maximal ideal M of R, RH has pro-

perty P .
(5) Every flat overring of R has property P .

PROOF. (1) & (2) = (3) = (4) are easy to verify.
We now proceed to show that (5) is equivalent to the
rest. For this we recall that S is a flat overring
of R 1if and only if for each maximal ideal M of S .,
Sy = HMnR . Now (5) = (2) because every quotient ring
of R 1is a flat overring. Further (2) = (5) because
if S 1is a flat overring of R then for each maximal
ideal M of S, SH = RHnR . Now by (4), which is
equivalent to (2) , § has property P .

According to [9] (Props. 4 and 5), a PYMD is es-
sential and according to [11] every quotient ring of a
PVMD is again a PYMD and hence is essential. Thus we
have the following corollary.

COROLLARY 1.4. A PVMD has Property P .

Corollary 1.4 gives rise to the inevitable ques-
tion: Is a P-domain a PVMD? The answer is no and the
counter example is given in the next section.

2. EXAMPLE OF A P-DOMAIN WHICH IS NOT A PVMD

EXAMPLE 2.1. Let k be a field Y, Z, xT,....
In"" indeterminates over k and let R = k{KT,...,

xn....} Y. Zl¢y, z) be a regular local ring of
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dimension 2.

Let ? denote valuation rings, containing
k([x } 1} nbta1ned by defining the valuation @b (t) =0
for a11 t e k({X; ]3#1} v, [x1} 1{?} = v, {I} and

vi(F(Ks Yo 2)) = vi(Tag 5 5 X 142, '3 .
123

1'nf{iI + i, + 13} !

let D=Rn {vi}, i=1, 2,... where each of Ui‘
defined above, is a discrete rank one valuation domain.
According to Heinzer and Ohm [11] the integral domain
D s an example of an essential domain which is not a
PYMD. We now proceed to show that the domain D has
the property P . According to Corollary 1.3 it is
sufficient to show that for each maximal ideal M of
D, Dy has the property P . In the following we
proceed to study the maximal ideals of D .

Let D; = D n k{KT,.,. Kj, Y, Z)
o k{xls---a :':J) LY. EJ{"I’, 7) N U'] i A "."j .

Now Rj = k{xl,..., xj} [Y, E][?, 7) is a UFD and, as
already mentioned, each vi is a DVR . Furthermore,
DJ has exactly j + 1 maximal ideals. This is so
because of the following two reasons.

(1) The centres Pi,..., Pj of vj respectively are
maximal ideals of Dj (cf. Corollary 1.16 of [10]).

(2) Rj is a quotient ring of Dj :

Clearly, (1) above gives Jj maximal ideals. For the
remaining one we note that Rj is a local ring and so
= {D )py where Py is a prime ideal. We claim

D

that Pé is a maximal ideal of Dj . Clearly there
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are no containment relations between Pi...., Pe MIF

1 :}F' then Hj = (D. }P' = V EDJ}Fi . But le is

a 2-dimensional local r1ng and Vs is a DVR, a caﬁ{ra-
diction. Whence there are no containment relations be-
tween Pa, Pi,..., F& . Now Dj = Rj n F1 i UE n...n?j
and by Theorem 105 of Kaplansky [13] P&, P iaiy Fj are
exactly the maximal ideals of Dj . Further since each
localization of Dj is a UFD and Dj has only finitely
many maximal ideals it follows that Dj is a UFD . Now
it is obvious that D = Lij - an ascending union of

UFD's . According to [11], R = D” and vi = DP
;

where M 1is a maximal ideal and Pi's are the centres

of the Vi . It is easy to see that any prime P of

D is the union of P n Dj and M, {Pi} are precisely

the maximal ideals of D .

Now R = DH is a regular local ring of dimension
2, a UFD, and hence a domain with property P . Simi-
Tarly DP » being DVR's, are domains with property P .
i
Whence it follows, in view of Corollary 1.3, that D
has property P .

3. SOME CHARACTERIZATIONS OF PVMD's

In this section we first prove the following sim-
ple result and then consider other characterizations.

THEOREM 3.1. Let D be an integral domain with
the property that for each pair a, b € D ; aD n bD
is of finite type. Then Lhe following are equivalent.
(1} D 1is an essential domain.

(2) D has property P .




MOTT-ZAFRULLAH

(3) D is a PYMD,
(4) D 4s locally a PVMD (i.e., for each maximal ideal
M, D, is a PVMD). 8

=

PROOF. The proof is based on the fact that D in
each case is an essential domain because according to
Lemma 8 of [17] an essential domain is a PVMD if and only
if it satisfies the hypothesis of Theorem 3.1.

Theorem 3.1 gives us the following two simple char-
acterizations of PYMD's.

THEOREM 3.2. An integral domain D is a PVMD if
and only if D 1is a P-domain and for each pair
a, b D ; ad nbD is of finite type.

THEOREM 3.3. An integral domain D is a PVMD if
and only if D is essential and for each pair
a, beD; aDbnbD is of finite type.

We take 3.2 as our definition of a PYMD. We could
do the same with 3.3 but a simple test for an integral
domain to be essential is not known. It may be that the
property P and the property of being an essential do-
main are the same; it seems unlikely, but at present we
do not know a counterexample.

In the remaining part of this section we derive a
necessary and sufficient condition for a P-domain to be
a PVMD: from a known characterization of PYMD's. For
this we need the notions of Kronecker functions rings
and of v-domains. We also need some related definitions.
For completeness we include a working introduction to
these concepts (and refer the reader to sections 32 and
34 of [6] for details).

e il
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Let X be an indeterminate over R and let f be
a polynomial in R[X] . Then the ideal Ae generated
by the coefficients of f is called the content ofy f .
Further let {vu}uei be a family of valuation over-
rings of R such that R =) 'u'ﬂ . Then A Mcc = A
is another *-operation on F(R) called the w-operation
induced by {U'ﬂ} . The ring RY = N ‘.’H{K} is a Bezout
ring called the Kronecker function ring of R with re-
spect to w . (Note that Uu{K} denotes the trivial ex-
tension of V  to K(X).) Moreover

RY = (f/g|f, g € RIXT: (Ag), = (A)),) .

Finally an integral domain R 1is a v-domain if for any
finitely generated ideals A, B, and C of R,

W

MBL,E ME]\, implies that Ey < C, - In particular
an essential domain is a v-domain (cf. [6], 44.13).

THEOREM 3.4. Let R be a P-domain and let
S = {f € R[X]|(Ag), = R} . Then R is a PVMD if and
only if each associated prime P of R[X] with
PnS=¢ issuchthat PnR # (0) .

The proof of Theorem 3.4 depends upon the following
theorem of Gilmer [5].

THEOREM (Theorem 2.5 of [5]). Suppose that J is
a v-ring and that J' 1is the Kronecker function ring of

J with respect to the v-operation. Then i is a quo-
tient ring of J[X] if and only if J is a PYMD. In

particular if J 1is a PVMD then 3' 3 a flat J-mod-

ule.

PROOF OF THEOREM 3.4. Let R be a PYMD . Then
according to the proof of Theorem 2.5 of [5],
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RY = F{[}{]5 where S is described in the hypothesis.

Now it is well known that if R is a PYMD then
for every prime ideal (§ of RY; anR# (0) 4orf
P is an associated prime of R[X] with PnS=10
then PR[K]5 is a prime of RY . Whence
PRIX]c NR # 0 ; that is P AR # (0) .

Conversely by Proposition 4 of [2], R = N Ry

a
where {Pu} consists of all the associated primes of

R . 1In view of the property P , RP are valuation
(3

domains. Let w be the *-operation induced by {HP } .

e ]
By 44.13 of [6], R" =R’ and we need only show that

R = R[X]g where S = {f € RX]|(A.), = RI .

First we note that, for f € R[X] {ﬁfj¥ =R if and

only if (A), =R . For (Af]“ = N HTRP& and since

is finitely generated, by Lemma 4 of [17]
RP = ([Af}v RP ]? = {Af HP ll,“r = Ag Rp (because Rp
a a o a
is a valuation domain).

Clearly RY > R[X] . Further, it is easy to verify
that, if f, g € R[X] with {Aflv = {Ag]v =R . Then
{Af ]lhr = R. Moreover, E#!l;fg},“r = R implies that
[ﬂfgv £ fﬂg]v = R, that is, S is a saturated multipli-
cative set. This shows that R” = RY ggﬂ[ﬂ]s .

Now R[I]s = r1R[K}Q where QT ranges over as-
Y

sociated primes of R[X] such that Q ns=¢ ([2],
Proposition 4). In view of Corollary 1.2, Q? are
valued primes. Further since QT nR#(0),0Q = qT[x]
where qT is an associated prime of R (cf. [2],

1o
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Corollary 8). Now corresponding to each H[I]q there

¥
is R in {R, } such that R {I} = R[X], - So
dy Ve Q

that F:tl:}'.i]q =N RqY{J{:I = RF [.'HI] = R¥ Now be-

cause we have already shown that RY 3 R[J{JS 5 = R[K]S.

4. VALUED PRIMES OF PVMD'S

In the course of our study of valued primes of
PVMD's we shall use the notion of t-ideals. Briefly an
ideal A of an integral domain R is a t-ideal if
A = U{F}le where F ranges over the finitely genera-
ted ideals contained in A . For a detailed study of
t-ideals and related notions the reader is referred to
Jaffard [12]. For our purposes we note the following.

A prime t-ideal is a t-ideal which is also prime
while a maximal t-ideal M 1is a t-ideal such that if
N 1is at-ideal properly containing M then N
equals R. It is easy to establish that a maximal t-
ideal is a prime ideal. Moreover, a minimal prime of a
t-ideal is a t-ideal (cf. [12], Corollary 3, p. 31).
Prime t-ideals are important in the study of PYMD's be-
cause of a result of Griffin. He proves in [9], that
R 1is a PYMD if and only if for each maximal t-ideal P
of R, HP is a valuation domain. 1In [9], he also
shows that if R 1is a PYMD then R = MR, where P
ranges over maximal t-ideals of R .

From the definition of a t-ideal it follows that if
A 1is a t-ideal then for every finitely generated ideal
Fehk s Fv — A . We use this fact to prove the following
proposition.

11
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PROPOSITION 4.1. Let R be a PVMD. Then a prime
ideal P of R is a valued prime if and only if it is

a t-ideal.

PROOF. Let P be a t-ideal. Then it is contained
in a maximal t-ideal M . Since R s a PYMD, RH is
a valuation domain. Consequently RP is a valuation
domain also.

Conversely let P be a valued prime in R and
let F be a finitely generated ideal contained in P .
We show that Fu =P . Clearly, since F is finitely
generated, by Lemma 4 of [17] {Fv RP]U = {FRP]v . Fur-
ther since R, is a valuation domain and F<= P , FRp
is principal and so [FRF}1IF = FRP . Now
EFv RPJU = (FR = FRF # EF and this demands that
F,eP.

F]U

We note here that in the above proposition the only
if part does not need the assumption that R should be
a PVMD . We record this observation as the following
corollary.

COROLLARY 4.2. Let R be an integral domain and
let P be a valued prime i

R then P is a t-ideal.

COROLLARY 4.3. Let R be an integral domain.
Then the following are eguivalent:
(1) R is a PYMD.
(2) Every prime t-ideal of R is valued.
1 t-ideal of R is valued.

(3) Every maxima

In [14], Sheldon studied Prime Filter (PF) ideals
in GCD domains. By a PF-prime he meant a prime ideal P
such that a, b € P inplies GCD(a, b) € P . We note
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that in a GCD domain R , EED{a],..., an} = {a1,...,an}v.
50 a PF-prime is a special case of a prime t-ideal. We
note that, in view of Proposition 4.1, most of the results
proved in [14] for PF-primes in GCD domains can be re-
phrased for prime t-ideals in PVMD's. For example some of
the results stated in the following proposition are re-
statements of Sheldon's results.

PROPOSITION 4.4. Let R be a PVMD then the fol-
lowing hold.

(1) The family {Pﬂ} of prime t-ideals of R forms a

tree under inclusion, that is, for any two prime
t-ideals P,, P, either F‘1 'EPE' . PEEP1 » Or
{F"I. PEJt = R =

(2) For every minimal prime P of R, Ry, 1is a valu-
ation domain.

(3) R is a Priifer domain if and only if one of the
following holds:
(a) every prime ideal of R is a t-ideal;
(b) every maximal ideal is a t-idea
(c) revery-maximt~t—ideal of R tsa—maximat—ideat;o

(d) prime ideals of R form a tree under inclu-
sion.

(4) Every prime ideal of R is a union of prime t-

ideals.
(5) If F is a finitely generated ideal of R with
F:1 # R then Fv is contained in at least one

e s, s it Smp—

valued prime.

PROOF. (1). Let P be a prime t-ideal. Then
since P 1is valued, any two prime ideals P], PE con-
tained in P are (i) valued, (ii) comparable to each

13
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other under inclusion, and (iii) t-ideals (being valued).
(2). A minimal prime ideal is clearly an associated
prime of each principal ideal aRc P . MNow use the fact
that a PUMD is a P-domain.

(3). It is well known that R 1is a Prufer domain if and
only if RM is a valuation domain for each maximal ideal
M of R . The conditions (a) - (d) can be shown to be
equivalent in the light of the above mentioned result.
(4). Every minimal prime of a principal ideal aR is

an associated prime in the sense that it is minimal over
aR:R . Now for each prime ideal P we have P =1J xR
where x € P . Moreover there is a prime ideal P',
contained in P , minimal over XR for each x € P .

So that P=UxRclJP'c P , where P' ranges over
minimal primes of principal ideals described above. Now
the result follows from (2) above.

(6). Since R 1is a PYMD each associated prime of R is
a valued prime. Now the result follows from Theorem E of
Tang [15] and from the fact that in R an associated
prime is valued and hence is a t-ideal.

5. AN ANALOGY BETWEEN PVMD'S AND KRULL DOMAINS

In the well studied case of Krull domains it is
customary to talk of subintersections of a defining fam-
ily of valuation domains im the following sense. Let R
be a Krull domain and let 1] denote the set of height
one prime ideals of R . If Y E;II s then the ring

T= M Rp is called a subintersection. Since for a

PEY - 1
Krull domain X

is precisely the set of prime t-ideals
we extend the definition to an arbitrary domain R . If

14
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X denotes the set of prime t-ideals of R and Yc X ,

then the ring T = RP is a subintersection of R .
peY
Now one aspect of the traditionmal definition of a sub-

intersection of a Krull domain has been omitted, namely,
that each RP is a valuation ring for each P eY . We
take that aspect into consideration in the following
definition. Let V denote the set of valued primes of

R and YcV then T= 1 R; fis said to be an R-

Pe
essential overring of R .

In view of Corollary 4.2, any R-essential overring
of R 1is a subintersection of R . Moreover, for PVMD's
the two concepts are equivalent.

It is well known that a subintersection of a Krull
domain is again a Krull domain, we extend this result to
PYMD's.

PROPOSITION 5.1. Let R be a PVMD. Then any sub-
intersection of R 1is a PVMD.

PROOF. From Theorem 2.5 of [5] it follows that if

R is a PVYMD, then R[I]s . With S ={f ¢ Ft[}'I:IHJ'!.‘J,“Ir =R}

is a Bezout domain. Now let T = RP , Where Y 1is

a subset of X = the set of prime t-ideals of R = the
set of valued prime ideals of R . Then, if w 1is the
*-gperation induced by the valuations rings RP for
PeY, (Ap),= N ApRy =T foreach feS. Thus,

TS RIX]; and since R[X]; is a Bezout domain, TV fis
a quotient ring of R[E]S and hence of R[X] . There-
fore TV is a quotient ring of T[X] and thus T is

a PVYMD by Theorem 2.5 of [5].

15

15
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6. FROM PVMD'S TO GCD DOMAINS

It is easy to see that an integral domain R 1is a
GCD domain if and only if for every finitely generated
fractional ideal A of R , Ft,Ilr is a principal frac-
tional ideal; that is a GCD domain is a special case of
PYMD's. It is, then, natural to ask, "Under what con-
ditions is a PVMD a GCD domain?" Before we 1ist some
conditions we recall that an integrally closed integral
domain R is a Schreier ring if for a | bc in R for
all appropriate a, b, c € R ,then a = aja, where a]!b
and a, | ¢ (cf. [4]). From [4] again, we recall that in

a Schreier domain an irreducible element is prime.

PROPOSITION 6.1. Let R be a PVMD. Then the fol-

lowing statements are equivalent.

(1) R is a GCD domain.

(2) For any two fractional ideals A, B of R such
that A, and B, are of finite type, (AB), = R
implies that Av and B, are principal.

(3) For any two integral ideals A, B of R with Av’
B, of finite type {AB}1lr = dR implies that A,
and B, are principal.

(4) R is a Schreier ring.

(5) If X is an indeterminate over R then every ir-
reducible element in R[X] is a prime.

PROOF. It is clear that (2) and (3) are equivalent.
For the rest we show that (1) « (3) and (1) = (4) =

(58) = (1) .
(1) = (3). Obvious from the definition of a GCD domain
given in the beginning of this section.

1a
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(3) = (1). We note that R is a PVYMD. So according to
Griffin [9], for all a, b in R ((aR n bR)(aR + bR}}? =
abR . Clearly aR n bR is of finite type and so, by (3),
{aR rth}v = aR bR is principal. Now recall that for
R to be a GCD domain it is necessary and sufficient that
aR n bR 1is principal for all a, b in R .

(1). = (4). Recall, from [4], that a GCD domain is a
Schreier ring.

{(4) = (5). Recall, again from [5], that if R is a
Schreier ring then so is R[X] . Now according to remarks
prior to this proposition every irreducible element in a
Schreier domain is a prime.

(5) = (1) . To show that R s a GCD domain it is suf-
ficient to prove that for every prime P of R[X] such
that PnR=0, P is principal (cf. IV of Theorem I
of Tang [15]). MNow since P n R= (D). P is a rank one
prime of R[X] and hence an associated prime of R[X] .
Further since R 1is a PVMD we use Theorem 3.4 to show
that the prime ideal P described above intersects the
set S = {f ¢ R[X] (Ag), = R} . For this we note that if
PnS=p then PN R# 0 and this contradiction gives
us the required result that P nS # P . Consequently

P contains a primitive polynomial of R[X] . Now ac-
cording to (5) a primitive polynomial of R[X] is a pro-
duct of primes. So that P contains a principal prime.
But since P is of height one, it is principal.

Since a Prifer domain is a PVMD we have the fol-
lowing corollary which, incidentally, is Theorem 2.8 of

[4].
COROLLARY 6.2. A Priufer domain is a Bezout domain

17
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if and only if it is Schreier.

The proof of (5) = (1) gives rise to the following
rather interesting result.

COROLLARY 6.3. (to the proof of (5) = (1)). Let
R be a Schreier ring. Then R is a GCD domain if and
only if for each prime ideal P of R[X] with P n R =(0),
P contains a primitive polynomial.

Recall that an integral domain R is said to be
atomic if every non-zero non-unit of R 1is expressible
as a finite product of atoms (irreducible elements). In

case of atomic integral domains the GCD property follows
from a very weak condition.

PROPOSITION 6.4. An atomic integral domain R i

UFD if and only if for any two coprime elements a, b
R, (a, b), =R.

=

PROOF. Clearly if R is a GCD domain and a, b 1in
R are coprime then (a, I:nLhlr =R. S0 if R is a UFD the
condition holds. Conversely suppose that R s atomic
and for a, b coprime in R, (a. b), = R . All we need
to show is that every atom in R is a prime. Let a be
an atom in R and suppose that a | bc . If a4 b then
a, b are coprime and so (a, b}IIIIII =R . Now

(ac, be),, = cla, ij cR . If we let bc = ad we have
(ac, bd), = afc, +:I),IIIr = cR . Finally since (c, d}v is
an integral ideal, a | c .

We say that an integral domain R satisfies the
property (A) if for any two coprime elements a, b of
R (a, bjy =R . The following result is an obvious con-
sequence of the proof of Proposition 6.4.



MOTT-ZAFRULLAH 19

COROLLARY 6.5. If an integral domain R satisfies
the property (A), then every atom in R 1is a prime.

A number of integral domains satisfy the property
(A) . For example it is easy to verify that a Schreier
domain satisfies this property. Then there is the obvious
case of the pre-Bezout domains, of Cohn, in which any two
co-prime elements a, b are comaximal i.e., va + vb = 1
for some u, b in the same integral domain. Finally
there are integral domains which satisfy the so called
PSP-property (cf. Arnold and Sheldon [1]). Here an inte-
gral domain R 1is said to have the PSP property if every
primitive polynomial over R is superprimitive; that is,
if f € R[X] 1is primitive then {AFJ? = R . Clearly the
property (A) is a generalization of the PSP-property and
in fact it can be termed as the linear PSP-property. For
details on PSP-property the reader is referred to [1];
what interests us here is that in certain cases the linear
PSP-property (or (A)) is equivalent to the PSP-property.

Although, like Schreier rings, the rings with pro-
perty (A) have the property that if a, b have a common
factor they have a higher common factor; the property (1)
does not imply the Schreier property. This follows from
an example, in [4], provided by G.M. Bergmann, of a pre-
Bezout ring which is not Schreier. This observation indi-
cates that the property (%) is more general than the
Schreier property. It is not clear whether a PYMD with
the property (1) should be a GCD domain, as in the case of
Schreier property (cf. Proposition 6.1). A detailed study
of this property is not our purpose, so we postpone it to
some future publication and consider a closely

1m0
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related special case of the property (%) . The pre-Bezout
property, which is a special case of the property (3),
gives us a rather interesting criterion for an integral
domain R to be a PID.

COROLLARY 6.6. An integral domain R is a PID if
and only if (1) R is atomic and (2) each pair of coprime

elements of R are comaximal.

PROOF. Clearly a PID is atomic and its coprime ele-
ments are comaximal. To prove the converse we show that
the conditions (1) and (2) imply the celebrated Hasse

Criterion for PID's. For the sake of completeness we in-
clude the statement of the criterion.

Hasse Criterion. An integral domain R is a PID
if and only if there exists a function f from R - {0}
to the set of natural numbers such that

(H]] a | b implies f(a) < f(b) with equality if
b | a also.

(H,) if a4 b and b.fa then there exist u, v, d in
R such that d = ua + vb and f(d) < min(f(a),f(b)).

Now according to Proposition 6.4 R is a UFD. So we
can define a function f from R - {0} to the set of
natural numbers such that {H1} is satisfied. Now if
a4b and b4 a, GCD(a, b) = d divides a and b
properly and thus f(d) < min(f(a), f(b)) . Now we can
write a = a]d and b = b1d where a and h1 are co-
prime. By condition (2) above there exist u, v in R
such that ua, + th =1 , that is ua1d + vh1d =4d .

Thus Hasse criterion is satisftfied and consequently R is
a P1D.

20
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/. SOME GENERALIZATIONS OF KRULL DOMAINS

Let {Va]msl be a family of valuation overrings of
R and consider the following conditions (on R) .

(1) Ft=r|‘u'ﬂ.

(2) For every non-zero non-unit x in R, x is a
non-unit in only a finite number of Vu .

(3) Each 4 is essential.

(4) Each v, is of rank one.

(6) Each Uﬂ is rank one discrete.

Integral domains which satisfy (1) and (2) are
called rings of finite character. Griffin [8] gave the
name, 'Rings of Krull type' to integral domains satisfying
(1), (2), and (3). The integral domains which satisfy
(1), (2), (3), and (4) are called generalized Krull do-
mains. This name s again due to Griffin [8]. Finally
the integral domains satisfying (1), (2), (3), and (5)
are the well known Krull domains. Rings of finite
character are not necessarily PYMD's but rings of Krull
type, as shown by Griffin in [9], are PYMD's. In this
section we show that, as the study of Krull domains was

made in the light of results on UFD's, we can study rings
of Krull type with a reference to GCD rings of finite
character. Following this line we introduce a further
generalization of Krull domains with reference to a gen-
eralization of UFD's discussed in [18].

By Lemma 13 of [3], an integrally closed integral
domain is a ring of finite character if and only if it has
a Kronecker function ring of finite character. For PVYMD's
of finite character we have the following Proposition.

21
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PROPOSITION 7.1. The following are equivalent for an
integral domain R .
(1) R is a PYMD and a ring of finite character.
(2) R is a PYMD and RY is a ring of finite character.
(3) R is a PYMD and every non-zero non-unit of RY is
divisible by at most a finite number of mutually
coprime non-units.
(4) R dis a ring of Krull type.

PROOF. We show that (1) = (2) « (3) = (4) = (1) .
(1) = (2). If R is a ring of finite character then sg
are R[X] and R, where X 1is an indeterminate over R
and S is a multiplicative set of R (cf. [9]). Now,
since R is a PVMD, by Theorem 2.5 of Gilmer [6] R’ is
a quotient ring of R[X] and hence a ring of finite
character.

(2) = (3). This equivalence follows from the fact that a
Bezout ring of finite character is a ring of Krull type
and from the results of [16].

(3) = (4). We note that R = R”[ﬁ K where K 1is the
quotient field of R . But since R is a PWMD, R’ =
FIRP (X) where Eu ranges over the maximal t-ideals of
R. Sothat R=R" NK =R, where each non-zero non-

(8]
unit of R s a non-unit in only a finite number of RP -

(4) = (1). Obvious. i
COROLLARY 7.2. Let R be a ring of Krull type.

Then every subintersection of R (e.g. a flat overring of
R) is a ring of Krull type.

PROOF. Let R be a ring of Krull type and let T
be a subintersection. By Proposition 5.1, T 1is a PVMD.

a3
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Now T' being an overring of R' , and hence being a
gquotient ring of RY ” T 15 a ring of finite character.

According to results of section 4, if R is a PYMD
then every minimal prime of a principal ideal of R 1is a
valued prime. Clearly if R 1is a ring of Krull type
then every principal ideal of R has only a finite num-
ber of minimal primes. We generalize rings of Krull type
to those PYMD's whose principal ideals have finitely many
minimal primes and call them pre-Krull rings. Pre-Krull
GCD domains have some interesting factorization properties
which can be described as follows. (For details the
reader is referred to [18]).

Let R be a GCD domain. An element x in R is
called a packet if for any factorization x = x, x, of
X+ % |65 or %, | x? . A product of finitl]yzmany
packets, in a GCD domain, is expressible as a product of
mutually coprime packets. Finally it is easy to see that
a non-zero non-unit x of a GCD domain R 1is a finite
product of packets if and only if xR has finitely many
minimal primes. A pre-Krull GCD domain 15 called a URD
(unique representation domain) in [18]. With reference
to these observations we state the following proposition.

PROPOSITION 7.3. A PVMD R is a pre-Krull domain
if and only if RY 1is a URD.

PROOF. It is easy to see that if every principal
ideal of R has finitely many minimal primes then the
quotient rings of R, and the polynomial rings over R
have the same property. As a result every principal ideal
of RY , which is a quotient ring of R[X], has finitely
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many primes. Now RY being Bezout, and hence a GCD do-
main, is a URD. The converse is obvious.

Methods of constructing new URD's (or GCD pre-Krull
domains) have been discussed in [18]. With some effort
those methods can be modified to produce examples of pre-
Krull domains which are not necessarily GCD domains. But
the process involved in making the adaptation is lengthy
and demands a separate treatment. The point that we want
to make in this section is that rings of Krull type (and
other known generalizations of Krull domains) can be
studied as generalizations of GCD rings with special
factorization properties. For example, according to [16]
a ring of Krull type is a generalization of GCD domains
whose non-zero non-units are divisible by at most a finite
number of mutually coprime non-units.

REMARK 7.4. We notice that, once we show that the
quotient ring of a PYMD is again a PVMD, the theory of
PUMD's runs along lines seemingly parallel to those of
GCD domains. This state of affairs leads one to look for
points of difference. One difference comes to light when
we consider atomicity. We know that an atomic GCD do-
main is a UFD. In view of this analogy we can ask if an
atomic PVYMD is a Krull domain or not. The answer, ac-
cording to Anne Grams [7], is no. In this paper she pro-
vides an example of a Priifer generalized Krull domain
which is atomic but not a Dedekind domain.

24
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