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ON RIESZ GROUPS

Muhammad Zafrullah

Let G be a directed p.o. group. An element x€G is primalin G if x€G +
and x < ajtaq, where a; € ¢+ , implies that x = xy+xg such that 0 < w<a. We
show that if H is an o-ideal of G such that xc BT implies x is primal in G and
if G/H is a Riesz group then sois G. Calling x € G T an extractor if for all g€G +
xVg exists, we show that if x ¢ H T imaplies that x is an extractor in G and G/H 1is
a Lo. group it is not necessary that G is l.o. unless G satisfies some extra conditions.

Connection of these results with a ring-theoretic result of Paul Cohn is indicated.

A directed p.o. group G s called a Riesz group if for ay, bj eG (i,j=1,2) with
a < hj there exists ¢ € G such that a;, <ec< bj" The letter G denotes a directed p.o.
group throughout. We use + to denote the group operation, which may not be
commutative, and use 0 for the identity of G. According to Fuchs [5, (4) Theorem 2.2] G
is a Riesz group if and only if every element of G is primal in G. The aim of this
paper is to prove the following result and to show some of its consequences and some of

its connections with the current literature.

=S

THEOREM 1. Let G be a directed p.o. group and let H be an o-ideal of G such tha

every member of I + is primal in G. If G/H is a Riesz group then so is G.

This result, as we shall explain later, is a general group theoretic version of Cohn’s
analogue of Nagata’s UFD’s Theorem for Schreier domains [2, Theorem 2.8]. The other

point of interest is the following corollary.

COROLLARY 2. Let G be a p.o. Schreier extension of a directed p.o. group H by

another p.o. group ¥. Then G is 2 Riesz group if and only if the following hold:




226 Zafrullah
{1} Every member of H + is primel in G,

(2) F is a Riesz group.

This note is split into three sections. In the first section we prove THEOREM 1,

and use its proof to isolate the largest Riesz subgroup of a given directed p.o. group. Ve

will call such a subgroup the largest interpelating subgroup of the given group. Tn the

second sechion we show the conmection of THEOREM 1, with the above indicated
theorem of Cohn’s. Using the ring theoretic connection we comstruct an example to
establish that if H is an o-ideal of G such that x € H * implies that x is an extractor
in G and if G/H is a Lo. group then all we can expect is that G is a Riesz group {(of
course we show that an extractor is primal). In section 3, we prove a modified version of

THECREM 1 for l.o. groups.

1. THE MAIN RESULT

To prepare for the proof of THEOREM 1, we need two simple lemmas. As these
lemmas can be proved for a notion slightly stronger than that of a primal element we

introduce it. We shall call x€G 1 completely primal if every element in [0,x] is

primal. In fact in THEOREM 1, the fact that W is an o-ideal and the requirement that
every member of H *t  is primal in G entail that the elements of H t e completely
primal. Obviously if x is completely primal in G and y € [0,%] then ¥ is also completely
primal. Later, in the next section, we shall give an example to establish that a primal

element may not be completely primal.

LEMMA 3. Let p be a (completely) primal element of G. Then everv conjugate of p is

{completely} primal.

PROQOF. Obvious.

LEMMA 4. In G any sum of (completely) primal elements is {completelv} primal.

PROOCF. Let p and g be primal and assume that p+q <a +aqg where a; € G 1. Then
p < aqtag implies that p = py+pg such that 0 <p; <a;. So if a; = pytxg then

pi+pota < pytxy+potxg  or q§[~p2+x1+p2] + [XQ] But as q is primal we
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conclude that q = qy+qg where q; £ —potxy+py and g9 <x,. This gives
0 <pota —py <x3 and q9 < Xo or Pi+potd) —Pg <pytx; = a; and
Py g < pytXg = ag. Clearly p+q = [py+pg+aq —pol + [Py+as] and p+q is primal.

Now suppose that p and q are completely primal and let 2y €G7T such that
a; <p+q. Then there exists ag € G such that ay+ag = p+q. Using the fact that p
is primal we have p = pit+pg, 0< p; <a; with a; = pytxy, which gives py+x;+pgtxg
= pytPytq or [~p2+x1+p2] + [XZ] = g. But as q is completely primal so is
—Pot+xy+py and so is its conjugate %{. But then a; = py+x; is a sum of two primal
elements and hence a primal element.

The next two lemmas do slightly more than prove the theorem. Before we state
and prove these lemmas let us recall that H is an o-ideal of G means that H is & normal,
convex and directed p.o. subgroup of G. The order in G/H is defined by x+H < y+H if

for some hy, ho €4, x+hy < y+hy in G.

LEMMA 5. Let H be an o-ideal of G and suppose that H™ consists of primal elements
of G. Let x,a,bec G + with x < a-+b. If there exist Xy, X9 € G such that x = xy+xg and
H<xj+H <a+H and H <xo+H < b+H (i),

then there exist 9, %9 € Gt such that X =ty zl+H = x1+H and z2+H = x2+H.

PROOF. By (i) and by the directedness of H, we can find h, € BT such that y; =
Xi+hi >0 and obviously vi+H = x+H. Now Vityo = x1+h1+x2+h2 = Xq+xgth
{since H isnormal h € ). Asx, h>0and as h is primal we have h = kq+kg where
k; € H such that 0 < k; <y;. But then x;+xq = [y —kq] + [y + (y9g —kg) ~kq] where
each element in the brackets is positive. Putting 31 =¥, wkl, Zg = k1+(y2—k2) wkl
we have x = 2129, 21+H = yy+H = x;+H and z9+H = yo+H = xg+H (since k1

ko € H T and His normal).

LEMMA 6. Let H be an o-ideal of G and suppose that every element of H + is primal in

G. If fer x>0, x+H is a primal element of G/H then x is a primal element of G.

Moreover if for x > 0, x+H is completely primal then x is completely primal.
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PROQF. Let 0 <x< a+b where 2, b€ G + and suppose that »+H = 3{1 : 12~HT such
that H <xy+H < at+H, H <xg+H < b+H (i}
Then as we can assume that x = Xy+%q where % € G, by LEMMA 5 we can assume
that X € G7T. By (i) and by the directedness (and pormality) of H we can assume that
there exist 1(1, kg € BT such that 0 < x < a+kl;
0 <o < btky {(31).
Now we show that for § <x <a+tb, 3, bEG +  we can select Xqy Ko 2 D such that x —
xRy, Xy S 2 and xg <b. By (i) there exist ug, ug 20 such thet
xytuy = atky (iii)
and xgtug = bt-kg (iv}.
This Jeads to  x{+uy+Rgtig = atky+b+kg of to x1+x2+ui—§—u2 = a,-}b+ka+k2 where
u’l = ~x2~1—111+312 >0 and kﬂl = ~b+l{1~%—b cH + . Now as x < a+b we have a+b =
x+w; w > 0, so thai x+u§1+112 = x+w+kf1+k2 or uaﬁ—uz = W-H'KiJrkz- Bub 3{2 cH +
gives kg = r-+s where 0 <1 < u‘i; 0<s<uy and ©, s €H . Substituting for kg in (iv)
we geb Xgtug = bdrts of Xptug—5 = b+4r. Again as 1 cHT and Koy By =52 0 we
have © = 14-+vg; such that 0 <1y < Xg 0 <19 Sup—s Consequently, xg + {ng—8—7g o)
= btxq, oF [xg —x4] + + [ry + (ug —s—r9) —17] = b Giving xg — 1y < b. Let us wribe x5
= xg—17 < < b and Xl = xRy — Xy Then x >0, x”l xﬁz = x4, x2<b and as
xy < at+ky, 1& =%y + X9 + 1} —Xg <a+ky + Xy +Ep Xy

Thus 0<x<atb, 2, beG + and x+H primal imply thai we can fnd y,

+

Xg € G+ such that x = R 0<x < a-+l and 0 <xg < b where £€H 7. So, we

N L
can find #y, 7g € G such that

2y + Xy = gta (g = 2+l — acHT) (+)
X9 =b ().
Consequently zl+z‘2+x = g4m+x where ’2 = + g% and m = atb—x>0.

This gives Z1+Zf2 =gtm. As g€H + ) By 2 0 we have g = gy+8g where
g € BT, gy <zy and go < 22 (vil}.

1

Substituting for g in (v), we get zy+xy = g1Hgg+a and so  —gq+agtE) = gota
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Again as gq Is primal we can write g9 = g93-+€90 such that gy € H,0<g91 < —81+%g
and 0 <ggg <xy. So —ggy — g1 HE Xy = Bggta or [—899 + (—8o; —81F5() +
g + [~ ggptx] = o
Writing x’l = — oo Xy, x’fz = =X +gogtx txg We have xf >0, xi—}«x‘% = ¥3+¥g with
x‘i < a and it remains to show that X& <b. For this, recall that z,+xy = b... by (vi}. Or
[2g — (=% +ggatxy)] + [—xy+eggtx +xg] = b.
But zg — (—x;+ggotx;) 20 because gog <go <2z = xtz9—xy (by (vil)). So
2y — (= X1 +g99+%1) + X5 = b which establishes that x5 <b. Finally if x > 0 and x+H
is completely primal, then for ¥y € G such that 0 <y <x we have H <y+H <x+H
which, by the earlier part of the lemma, makes y a primal element.

The proof of COROLLARY 2 depends upon a simple use of the definition of the p.o.
extension of a p.o. group for which, if necessary, [4] may be consulted.

Let us call an o-ideal Il of G an interpolating o-ideal of G if every element of H T isa

primal element of G(and hence, due to convexity of H, a completely primal element of
G). We now proceed to show that every directed p.o. group G contains an interpolating
o-ideal M(G) that is the largest i.e. contains every other interpolating o-ideal. Though of
course M(G} wmay be trivial... in which case G is void of strictly positive {i.e. non-trivial)

completely primal elements.

THEQREM 7. Every directed p.o. group G contains an interpolating o-ideal M = M(G)

that is the largest that is if My is an interpolating o-ideal of G then MIQM(G}

-

Consequently G/M contains no non-trivial completely primal elements.

PROOF. Let S be the set of all completely primal elements of G. Then by LEMMA 4, S
is a monoid and by LEMMA 3, g+S = S+g for all g€ G. The convexity of S follows
from the fact that every positive element preceding a completely primal element is
completely primal. For {5 SQES, sytsy = 0 implies that 81 = 8y = 0, because
scae™T (or...if you like because 0 is completely primal). Finally as SC G, S satisfies
the cancellation property. Thus, according to [1, Theorem 1, p.321], M = <85> is a

directed group and hence a directed subgroup of G. The convexity and normality follow
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by the convexity and normality of § and directedness of M. That M is the largest

interpolating o-ideal is obvious. Finally the last part of LEMMA 6 ensures that G/M

contains no non-trivial completely primal elements.
If Riesz groups (i.e. groups with interpolation property) are of any use then Cohn’s

completely primal elements may be seen as a tool for isolating a useful part of a general

p.0. EIOUD.

9. SOME RELATED QUESTIONS

We devote this section to (i) indicating the connection of THEQOREM 1 with Cohn’s
results (ii) giving an example of a primal element that is not completely primal and to
(iii) answering the question, why choose Riesz groups for THEOREM 17 Why not Lo.
groups?

We first prepare to indicate the connection of THEQREM 1 with Cohn’s Theorem.

Let D be an integral domain with quotient field K. The set G(D) = {xD| x € K\{0} is a
directed p.o. group under xD -yD = xyD and xD <yD if and only if yD CxD. Indeed
D is the identity of this group and (G(D)) + = {xD| x € D\{0}}. According to Mott (8,
Theorem 2.1} if S is a saturated multiplicative set of D andif 8 = {sD]|s€5} then
<85>, the group generated by S is a convex directed subgroup of G(D) and, conversely, if
T is a convex directed group of G(D), then T = {xeD| xD €Tt} is a saturated
multiplicative set. Moreover for 5 saturated and multiplicative, G(Dg) = o G(D}/<S>.
Cohn calls an element x of an integral domain D primal if for a, b € D, x|ab implies
that x = XXg such that x1|a and leb, and completely primal if every factor of x is
primal. Then he calls an integral domain D Schyeier if D is integrally closed and each
non-zero element of D is primal. He then proves that every quetient ring of a Schreler
domain is Schreier and that for D integrally closed if S is generated by completely primal
elements of D and if Dg is Schreier then so is D [2, Theorem 2.6]. Tet us call D
pre-Schreier if every non-zero element of D is primal. Clearly, D is pre-Schreier if and

only if G(D) is a Reisz group. In view of the above discussion and in view of our theorem
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we malke the following statement.

COROLLARY 8. Let D be an integral domain and let S be a multiplicative set

generated by a set of completely primal elements of D. I DS is a pre- Schreler domain

then so is D.

For the proof we only need to know that the saturation 5° of S consists of primal
elements of D and that <§8'> is then an o-ideal of G{D), with positive elements primal in
G(D).

Although COROLLARY 8 appears to be so, it is not an improvement on Cobn’s
result, because in his proof Cobn does not use the exira condition that D is integrally
closed.

Having indicated the connection we attend to the following natural guestion: “Is
there a primal element that is not completely primal?” From the abowve discussion it
follows, among other things, that “x is {completely) primal in D” translates to, “xD is
{completely) primal in G(D)” and vice versa. So it would be sufficient to find an element

x in an integral domain D such that x is primal but not completely primal.
Example 9. Let R be an integral domain that is not pre-Schreier, X the quotient field of
i

jl .
R and x an indeterminate over K. Then, in the ring D = {ag + 2 2% ag € R, a; €K}
1

= R + xK[x] the element x is primal but not completely primal.

Iustration. Note that if f€D then f= ax' (1 + xfy(x)) where f;(x) € K[x], 2 €K,

r>0 andif r=0, a € R. Now let x|fg, f, g € D. We can write

f=ax'(1 + xf(x))
g = bxS(1 + xgl(x))h

If both r, s > 1 we can write x = d(x/d) selecting d so that db € R. Then clearly d|f and
x/d|g. (The choice of d so that db € R is to cover the possibility of s being 1... as in thai
case g/(x/d) = db(1 + xg;(x)).} Further if any of r, s say s > 2 we can write x = 1-x
where 1}f and x|g. This leaves the case when one of 1, s is 0 and the other is 1. Let r=0

and s=1. Then r=0 gives {= a(l + xf;(x)) wherea € R and g = bx(1 + xg4(x))-
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Now as x|fg = abx(1 + xf{(x)) (1 + xg1(x)) we conclude that ab € R. But then we can
write x = a(x/a) where alf and (x/a)lg. Having exhausted all the possibilities we
conclude that x is primal. Now as B is not pre- Schreier it must have a non-zero element
d that is not primal and as evefy non-zero elemaent of B divides x we have ihe
conclusion that x is not completely primal. (Indeed a use of COROLLARY 8 will
establish the sufficiency in the following statement: Given that D, B, K and x are as in
EXAMPLE @, D is a pre-Schreier domain if and only if x is completely primal in D. The
necessity is of course obvious.)

It is natural to ask, “Why were Riesz groups chosen for THEOREM 1, and not the
}.c. groups?” Obviously we raise this question because we have an answer. As it stands,
the question is mot preperly posed; it does not prepare the grounds for an answer, A
properly posed question should first give us elements like the completely primal elements

» - ~ ~ -
so that if G consists of these elements then G is a Jattice ordered group.

DEFINITION 10. Call g € G an extractor f g € G and forall x € G + gV x exigts.

So the proper question is, “Let H be an o-ideal of G such that every element of H + is
an extractor in G. Is it irue that if G/H is an Lo. group then so is G7” The answer is,

“A1l you can expech is that G 1s a Riesz group.” To justify this answer we need first to

establish that an extractor is indeed primal.

PROPOSITION 11. In a directed p.o. group G, anv extractor is a completely primal

element.

PROOF. We first establish that if r € G is an extractor then for all h € [0,z], h is an
extractor. We need to establish that for all d € G + , hvd exists. Since © = htk for
some k€ G, and since 1V (d-+k) exists we copclude that hvd = rV (d+k) —k also
exists. Moreover if r is an extractor then for all d € G TorAd= —(—1V —d) exisis in
G and ifrAd =k then » = xy+k, d = dy+k such that 1 Ady = 0. Now let v be an
extractor and suppose that © <atb, s, b€G T Then as rhAa =k’ exists we have

= ls:"’—{—rl and a = 1{’+a1 where 11 Aag = 0 and so 1q <a4+b which implies that
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1; <b (cf 5, p.10]). Thus if r <a+b where a, beGT then r = k+ry such that
0<k<aand 0< 1 < b. Thus an extractor is primal. Combining this result with the
first part of the proof we have the proposition.

Se, we have established that if H is an o-ideal of G such that every member of H +
is an extractor in G then the event of G/H being lattice ordered would cause G to be
at least a Riesz group. To show that this Riesz group may not be a Lo. group we need to
give & counter example... and of course we need to see what extra conditions on H or G
will make G a Lo. group. For this we translate the problem into a ring theoretic one..,
for in ring theory the corresponding problems have received attention.

Let D be an integral domain and let G(D} be the group of divisibility of D. Tt is
easy to see that for a, b € D\{0},

2DNbD = U(aD, bD) = {xD € G(D)| 2D, bD < D}
and obviously al} vV bD exists & for some x € K\{0} U(aD, bD) = U(xD) < aDnNbD is
principal < (8,b), = ((a,,b)"l)"l is principal. Further if (a,b), = (aD + bD), is
principal its generator is the GCD of a and b {up to associates). (Indeed, for a,
b e D\{0}, (a,b), = (aD + bD), may stand for L(aD}, bD) = {xD € G(D)| xD <aD,
bD}.) Thus D is a GCD-domain if, and only if, G(D) is a Lo. group. An extractor
rD € G(D) obviously translates to what may be called a lom extractor ie. re DA{0}
such that for all x € D\{0} D NxD is principal (or equivalently (r,%)y is principal). Se if
we produce a Schreier domain R that is not a GCD-domain bub contains a saturated
multiplicative set S consisting of extractors such that R’S is a GCD-domain we have our
counter-example. For then via Mott’s result [8] G(R)/<S> = G(Rg) will be a Lo.
group where <S> is an o-ideal of the Riesz group G({R) and <8> T consists of
extractors from G(R). Most of the examples comstructed in [10] will meet the
requirements but we shall use example 2.6 of that paper for its directness and

accessibility. Besides it affords a less technical illustration.

Example 11. Let E be the ring of entire functions. It is well known that F is a Besout

domain (every {initely generated ideal is principal) [7], and hence a GCD-domain. It is
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also well known that an entire function is uniquely expressible as a countable produck
H(z——ai)niei of associates of powers of distinct linear polynomials in a single variable
over C (here n; € N, obviously z —a; ate primes of E and e the units of E). Moreover a
non-zero principal prime of E is a maximal ideal of height 1. Now let § be the
multiplicative set of E generated by the non-zero principal primes of E and let x be an

indeterminate over E. Then the integral domain
£ = + i Wa, €F, 8 € Eql} = E + xEgl
. = {a 2 ax'| ag €E, a; € Eg}} = B + xbig x|

is the required Schreier domain.

THustration. Because E is integrally closed, so i8 E(S) [3] and it is easy to see that every
principal prime of E is a prime of E(S) and that in an integral domain any finite product
of non-zere principal primes will have an lera with each nop-zero element of the integral
domain. Moreover any factor of a product of powers of these primes is again a product of
powers of primes. (Indeed we entertain empty products and so S contains the units of
E... and hence of E(S)) Thus S is a saturated roultiplicative subset of E(S) such that
every member of S is an lem extractor of E(S} (and of E). But (B + KES[X])S = ES[X] a
GCD-domain (for Eg is a Bezout domain [2] and hence GCD and a ring of polynomials
over a GCD-domain is again a GCD-domain). So by Cohn’s Theorem or (via Mott's
Theorem) by THEOREM 1, E(S) is Schreier. The reason why E(S) is not a GCD-domain
is more or less obvious: Let e be an infinite product of (non-zero) principal prime of E.
Then e and x do not have a GCD. This is because even though every prime power
dividing e divides x only a finite product of prime powers can divide both... as x is
divisible only by members of S. 5o, in this case, we will keep on getting greater and
greater common divisors but never the greatest.

The polynomial ring construction used in Example 11 is known as the D + ){DS[X]
construction. Introduced in [3], this construction has since been used as an efficient tool
for constructing examples. In fact in [10] this author presented this construction as a

device for constructing Abelian Riesz groups from Abelian Lo. groups. It would be
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interesting to see if a parallel or similar group theoretic construction is possible.

3. MODIFIED THEOREM 1 FOR L.O. GROUPS

Finally, in view of Example 11 we ask, “How much more should we modify
THEOREM 1 to get a lLo. group conclusion?” On seeing Cohn’s Theorem the ring-
theorists asked the corresponding question for GCD-domains. An answer was provided in
[6]. Then Mott and Schexnayder [9] showed in essence that the conditions imposed on S
in {6] made <3> into a cardinal summand of G(D). But in group theoretic terms it
means the following statement.

Let H be 1 cardinal summand of G. ¥ H 1 consists of extractors and G/H is a Lo.
group then so is G. In group theory this result is stated slightly differently but its
triviality needs no proof.

But as the quotient of a l.o. group by any of its o-ideals is again a Lo. group there
do exist more general l.o. group extensions of Lo. groups by L.o. groups. So there may be
a more general simple answer. {Considering the literature on this topic any answer in the

spirit of this paper will indeed be simpler.) The counter example i.e. Example 11

suggests, to this author, the following statement.

THEGREM 12. Suppose that H is an o-ideal of G such that:

(1} every member of H + is an extractor of G

(2) iffora,beG™T thereisheH ™ 4 {0} such that b <a,b then there

d < a,b such that for k € BT with k <a,b, k < d.
If G/H is a lo. group then so is G. Moreover if G is o Lo, group then every o-ideal

I of G satisfies (1) and (2) and G/H is 2 Lo. group.

PROOF. First let us note that by the observations in section 2 and by THEOREM 1, G
is a Riesz group by (1). The next observation will be referred to as the “Riesz group
property”. We note that in a Riesz group G if a, b€ G T ape non-disjoint then there
exists a strictly positive element h of G such that h < a,b. For if a and b are non-disjoint
and positive then there exists x such that x <a,b and x is not less than or equal to 0.

But then 0, x <a,b and by the interpolation property of Riesz groups there exists h such
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that 0, x <h < a,b and obviously this h must be strictly positive.

It is our task now o show that for each pair a, b€ G +, aVb and a Ab exist. We
choose ¢ o show the existence of a A b leaving 2V b to the reader as it will foll to similar
techniques. Let a, be G T, Since G/H is a Lo. group. a-+H Ab+H = -l giving a-+H
= aj+tctH and b+l = bytetH where aq, by 2 0, and al+H/\bl+H = H. Using the
fact that H is an o-ideal we can find hl’ kl, b, ko € H + such that

athy = a,l—l—c—i-lc} (i)
bthy = bytetky (31)
since hy, hg are exiractors we can find hyVhg = hyt+dy = hg+dg, d; € H . Adding dq
to the right of (i) and d, to the right of (ii) we get
at+hy Vhg = ay+ctmy (3i1)
bthy Vhg = bytetmg (vi)
where m; € H +.
Since H is an o-ideal we can find m; eH 7 sothat
athy Vhy = a.1+m"1+ﬂ (v)
bihy Vhy = by-Hmgte. {vi)
Subtracting ¢ from the right of both equations we get
athy Vhg—c = a1+mﬁ {(vit)
bthy Vhy—c= bl—{—mfg. (viii)

1t is sufficient o show that al—}-ma Ab1+m’2 exists. For this we first note that if
0<x< al—%«m’:l? bﬁLmﬁ'Z then x € H. (For in G/H, we have Il <x+H < ay~+1, by+H and
a;+H Ab+E = H.) Now suppose that al—{ﬁm’i/\bl—{-mfz does not exist. Then a.1+m’1
and bl—‘;—m% are pon-disjoint and so by the Riesz group properiy there exists a strictly
positive t such thal t < a1+m’1? b1+mf2 and as we have noted above t € HT. But then
by (2) there exists d € Gt withd< alm’l, b1+m"2 such that 0 <h gal—km%@ bﬂhm%
implies that h <d. Clearly, by the above observation, d € H t and by the definition of
the infimum d = a}\—{—m'l A bﬁ—m‘%. The moreover part follows from that fact that for all

a, b€ G, aAb exists. SoaAb can be d of part (2), and the rest is either obvious or well-
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known.

Indeed we can make a statement like COROLLARY 2 in this case as well but we
leave it to the reader. We also leave to the reader the proof of the following corollary.
COROLLARY 13. Let S be a saturated multiplicative set of an integral domain D such
that
(1) every s €5 is an lem extractor,

(2) Iffor a, b€ D\{0} there is a non-unit s € S with sla,b then there is

d|a,b such that for all ¢ € 5, tla,b implies t|d.

It DS is a GCD-domain then se is D. Moreover if D is a GCD-domain then DS is a
GCD-domain and (1) and (2) hold.

REMARK 14. COROLLARY 13 obviously covers the case where <S> is a cardinal

summand of G(D). For in that case every element of D\{0} is expressible as d = rs
where 1 is such that for t € S, t]r imaplies t is 2 unit. So given d} =rysp dg = ToSq in
D\{0} we can determine GCD (s1,89)=d and this obviously will suffice for the d in (2) of
the above corollary. Indeed we could let 5 be generated by extractors...as the product of

two extractors is an extrachor.
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