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The aim of this article is to study some extreme cases of two notions
of class groups based on the t-operation. These groups are defined as fol-
lows. Let R be a commutative integral domain. The set T(R) of ali t-inverti-
ble t-ideals of R is a group under the operation of t-multiplication. The
group T(R) contains as subgroups the set P(R) of all non-zero principal
fractional ideals of R and the set Inv(R) of all invertible ideals of R. The
quotient groups CI(R) = T(R)/P(R) and G(R) = T(R)/Inv(R) are respec-
tively called the class group and the local class group of R. Obwiocusly
CI(R), defined thus, contains as a subgroup the Picard group: Pic(R) =
Inv(R)/ P(R). We study the cases when CI(R) is trivial or torsion (G(R) is
trivial or torsion). Given below are some results which can be stated in ge-
neral terms. (1) If S is a multiplicative set of R generated by primes pi such
that each prime piR is of rank one and the intersection of infinitely many
distionct piR is zero, and if Cl(Rs) = 0 then CI(R) = 0. Moreover, with the
same hypothesis for pi, if Pic(Rs) = 0 then Pic(R) = 0. (2) if G(Rm) = 0O for
all maximal ideals M of R then G(R) = 0. This result combined with a ra-
ther technical result gives: If Krull dim R = 1 then G(R) = 0.

0. Introduction.

Let R be a commutative integral domain with quotient field K and let
F(R) be the set of non-zero fractional ideals of R. A function*: F(R) — F(R)
is called a star operation on R if for A, B € F(R) and for a € K - {0},

i) (@* = (a), (aA)* = aA%,
i A< A* and ASB implies A* & B*
(i) (A*)* = A* y

Given a star operation * on R and given that A, B € F(R) we have
(AB)* = (A*B)* = (A* B*)*. These equations determine what is called
star multiplication. A function on F(R) defined by A — (A = Ay is
another star operation called the v-operation. Based on the v-operation we
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define for all A € F(R), Ac = UF, where F ranges over finitely genera:
ted R-submodules of A. The fuction F(R) — F(R) defined by A —
Ay is vet another ster operation called the t-operation. For a detailed
study of star operations the reader may consult [8] and [10]. For our
purposes We irclude here some basic terminology.
Given a star operation * on R, an ideal A€ F(R) is called a x-ideal
i A= A*anda +-ideal of finite type if A = B* for some finitely genera-
ted B € F(R). An ideal A € F(R) is called 2-invertible if there exists B E
F(R such that (AB)* = R. In this case B* =A™ (Jaffard [10, p,.23]).
It is well known that if A€ FR) is a t-invertible tideal then A and A
are t-ideals of finite type (and hence v-ideals of finite type [9]). Moreover, it
s easy to verify that, if A, B & F(R) are both t-invertible t-ideals then so
is (AB) Rased on these observations a notion of a class group, of a gene-
ral integral domain R, was introduced in [3]; as follows.
1et TR) = A e FR) | Aisa t-invertible t-ideal} and
PR) = (R I xEK- {0}}.
Then T(R) is a group under t-multiplication. This group contains P(R) as its
subgroup; since principal is invertible and hence is a t-invertible t-ideal.
The quotient group CIR) = T(R)/P(R) is called the class group of
R relative to the t-operation. This quotient group, as noted in (3], reduces
to the divisor class group Of RifRisa Krull domain and reduces to the
ideal class group if R is a Prufer domain. Moreover, as demonstrated n
(19], CI(R) can be of use in the study of some aspects of Prufer v-multi-
- plication domains (PVMD’S); that is integral domains in which every v-i-
deal of finite type is t-invertible. Following [2], another notion of a class
group called the local class group was introduced n [3]. This was done
as follows. Let Inv(R) be the set of all invertible ideals of R. Then Inv(R) is
a group and because every invertible ideal is 2 t-invertible tideal of R,
Inv(R) is @ subgroup of T(R). The quotient group G = T(R) /Inv(R) s
called the local class group of R. We note that these class proups are rela-
ted to a well known class group; the Picard group Pic(R) = Inv(R)/ P(R).

MNow because
TR)/Inv(R) = (T(R)/PR)) / (1nv(R)/ PR))
we have the following exact sequence of groups, if we regard them additive:
0 — Pic(R) — CIR) — G(R) — 0. Here the homomorphisms are canonical.
In the study of class groups it 1s often important to know when 2 class
group is trivial or torsion. We devote this article to answering the questions:
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Question 1. Under what conditions on R is CI(R) trivial (torsion)?

Question 2. Under what conditions on R is G(R) trivial {torsion)?

We provide general answers to the four questions arising from these
two. Yet to gwe an idea we mention that for R a PYMD, CIR) = 0 if and
only if Ris @ GCD-domain (compare with: For R Krull, CIR) = 0 if and
only if R is a UED (see e.g. Fossum {7])). Further, for R a PYMD, CI(R)
is torsion if and only if R is an almost GCD-domain of [19] i.e. for all f, g
€ R, there exists n(f, ¢) € N such that R N g'R s principal (con
mpare with: K Krull is almost factorial of Stroch [17] if and only if CI(R) 1s
torsion).

We allocate a section, however small, to each of the four questions
arising from the above two. Yet, before we give away the plan of the pa-
per, it seems necessary to make a few remarks about notation etc. All
unexplained notation can be easily found in current literature. For this pa-
per we use the letter R to denote a commuative integral domain with field
of fractions K. Apart from this we use D¢(R) to denote the set of v-ide-
als of finite type (of R).

In the first section we study the case when CI(R) = 0. In this section
we show that CI(R) = 0 if and only if every t-invertible tiideal A of R has
the property that every finitely generated R-submodule of A is contained in
a syclic R-submodule of A. Using this we show that if R is a pre-Schreier
domain of [22] then CI(R) = 0. Consequently if R is a GCD domain
CI(R) = 0. As mentioned already we also show that if R is a PVUMD then
CIR) = 0 if and only if Ris a GCD domain. It is also shown that if R is
quasi local with its maximal ideal M a tideal then CIR) = 0. We end this
section with the following interesting result. If Sis a multiplicative set of R
generated by principal primes {pi} such that piR are of rank one and any
infinite intersection of piR is zero and if CI(Rs) =0 then CI(R) = 0. Moreo-
ver if, with the same hypothesis for S, Pic(Rs) = 0 then Pic(R} = 0. We
use the above result to prove that the construction R-= Ki + XKl

X], where K, is a subfield of the field Kz, is such that CI(R) = 0. In secti-
on 2, we study the case when G(R) = 0. We show that G(R) = 0 if and
only if for all I, JETR): € T(R) if and only i for all 1, J € T(P) 1nH™"
— 1'J7". Using this we show that if R is a *-domain of [22] i.e. if for all ar,
. am; bi, ., bn ER - {0} we have (N(b)) (N (b)) = Nfaiby) then G(R)
— (. From this it follows that for a PVMD, R, G(R) = 0 is equivalent to R
being a *-domain Or & G-GCD domain of [1]. Finally we show that if G(Rm)
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= () for every maximal ideal M then G(R) = 0. Consequently if each ma-
ximal ideal of R is a t-ideal then G(R) = 0. We use this observation to
prove on the one hand that if dim R =1 then G(R) = 0 and on the other
hand that if R is a CP domain of [13] then G(R) = 0. Here R is a CP do-
main if every family {P;} of prime ideals of R has the property that for eve-
ry integral ideal A S U P we have A € P; for some j. In section 3
we study the case when CI(R) is torsion; we give the general characteriza-
tion and do little more than mention results on CI(R) torsion in case Risa
PUMD. These results have already been published [19]. In section 4, we
characterize R for which G(R) is torsion and give a result treating PVMD’s

R with G(R) torsion.
1. The case when CI(R) =0

Theorem 1.1. Let R be an integral domain. Then the following are equi-

valent.

@ CIR)=0,

(i) Every tinvertible t-ideal is principal,

(i) Iflandd are two finitely generated non-zero fractional ideals with (1J)v
principal then L and Jy, are principal.

Proof. (i) < (ii). This is just the definition.

(i) = (1) If (1d)y = (d), then since 1J is finitely generated, we have (Id)v =
(1) = (d) and so (IJd™Ht =R. But then I and hence 1 is t-invertible and,
because k = I, by (i) I, is principal.

(iii) = (ii). Let 1 be a t-invertible t-ideal of R. Then there exist two finitely

generated ideals I’ and J° such that =1 =1I{ and R = (i 3)e =

Iy =" d So, by (i) I = I, is principal.

Example 1.2. f Ris 2 GCD-domain then C1 (R) = 0. This is because,
in a GCD-domain R for all finitely generated A € F(R); Avis principal.

An R-module M is called locally cyclic if every finitely generated R-
submodule of M is contaived in a cyclic R-submodule of M. We note that a
v-ideal of finite type is principal if and only if it is locally cyclic and so we
can make the following statement.

Proposition 1.3. For R the following two properties are equivalent.

H CUR)=0
(i) Every t-invertible t-ideal of R is locally cyclic.

Recall that if x is a non-zero no-unit of R then x is primal if x| ab in

R implies that-x = aiby such that ai{a and by |b [5]. If every non-zero
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non-unit of R is primal then R is called pre-Schreier [22]. Now D is pre-
Schreier if and only if the inverse of every finitely generated fractional ideal
is locally cyclic (see [22, Corollary 1.5 of [20] and the reference there] ).
These observations give rise to the following result.

Proposition 1.4. If R is a pre-Schreier domain then CI(R) = 0. Thus in
a pre-Schreier domain the following are equivalent for A € F(R).

(H Ais t-invertible,
(2) Atris invertible,
(3) Atis principal.

The proof is based on the fact that if A is t-invertible then Ay is a v-i-
deal of finite type; which is the inverse of a finitely generated ideal.

Corollary 1.5. Let R be a PUMD then the following are equivalent for B.
1 CIR) =0,

(2) Risa GCD-domain,
3) Risa pre-Schreier domain.

Proof. (2) and (3) are equivalent by Theorem 3.6 of [22].

(2) = (1) follows from Example 1.2 and (1) = (2) because for every finitely
generated A € F(R) we have A, t-invertible and hence principal by (1).

~ We now proceed to indicate some interesting examples of integral
domains R which are not GCD-domains, nor are they pre-Schreier, but for
which CI(R) = 0. For this we note the following result.

Proposition 1.6. Let R be a quasi local domain in which the maximal
ideal is a t-ideal. Then a t-invertible fractional ideal of R is invertible, and
hence principal.

Proof. Let M be the maximal ideal of R. Further let A € F(R). Then
(AAT") = R. Suppose that AA™' # R. Then as AATT € R we con
clude that AAT' ¢ M. But then (AA ™) €M because M is a t-ideal.
But (AAT) =R a contradiction. Thus we conclude that AAT = R.

Corollary 1.7. f R is 2 quasi local domain with its maximal ideal a t--
deal then CI(R) = 0.

It is easy to see from Example 1.2 that if R is a quasi local domain wi-
th CI(R) = O then it is not necessary that its maximal ideal should be a t-
‘gdeal.

' Corollary 1.8. If R is a one dimensional quasi local domain then
CI(R) = 0.

Proof. Because every integral t-ideal is contained in a maximal t-ideal

{which is integral) and because a maximal t-ideal is prime (see Griffin [9] or
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Jaffard [10]) we conclude that the maximal ideal of R 1s 2 t-ideal.

We now give an example of a quasi local domain R with Cl (Ry=20is
which for every 1€ F(R) there exists a J € F(R) such that (Id)v is prin-
cipal without Ly and J, being principal.

Example 1.9. The one dimensional completely integrally closed non-va-
luation domain R constructed by Nagata in [11] and [12] is an example of
an R with CI(R) =¥ 0, but with the property that for some I, J € F(R),
(1J), is principal without Iy, Jv being principal.

llustration. Because R is ‘completely integrally closed, according to {8,
Theorem 34.3], for all I € F(R) there exists J € F(R) such that (IJ)y = R. If
I, and Jy are both qf finite type then by Theorem 1.1, both must be prin-
cipal. But since R is not a valuation domain (and hence is not a GCD do-
main) Iy is not principal for some finitely generated 1 € F(R). According to
Theorem 1.1., this is because there is no finitely generated J € F(R) such
that (Id)y 1s principal.

To close this section we give yet another example of an integral do-
main R for which Cl(R) = 0. The importance of this example lies in the
fact that to establish it we use a theorem similar to Nagata’s theorem for
UFD’s.

Example 1.10. Let Ki be a subfield of a field Ka and let X be an inde-
terminate over Ka. Then the integral domain

R = K, + XK [X] = {{(X) = a0 + 2 aiX’ | a0 € Ky and ai € K}

has the property that CI(R) = 0.

Lemma 1.11. Let R be an integral domain and let S be a subset of R
generated multiplicatively by a family {pi} of primes such that for eah i, piR
is of rank one and the intersection of an infinity of distinct piR is zero. It
Cl(Rs) = 0 then Cl (R) = 0.

Proof. Let A be a t-invertible t-ideal of R. Since every fractional ideal F
of R can be written as F = B/d where B is an integral ideal of R and sin-
ce E being a t-invertible t-ideal is equivalent to B being a t-invertible t-ideal,
we can assume that A C R. By Lemma 2.5, to be proved in the next sec-
tion, ARs is a t-invertible t-ideal. But then, as Cl(Rs) = 0, ARs = aRs for
some a€ R

Now ARsﬂR:aRsﬁR:{XER | xs €EaR}={xE€Ra]xs
for some s € S}. Because of the hypothesis on S we can write a = aia2

_____~
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€S and ay 18 coprime to each member of S. But then asaz | Xs.
ty A< ARsNR = aRsNR = aiR.
e t-ideal A is a v-ideal of finite type and so A = (x1,
where di € R, and so A = ay(dr, o dn)y. Now
as ARs = ajRs we have (di1, - dn).Rs = Rs which implies that (di,
L, da NS -« 0. Further, because of the property of {pi}, d1, - dn have
a greatest common divisor, say s, in S and consequently if d; = sei we
have A = ais (ex, .o en). We claim that 1 € {(er, .- en)v. 1O establish
this claim we note that, because (@1, - enhBs = {di, .o

i, en)\,. NS # @ Now suppose that 1€ (e, o en)v. Then there exists
a fraction x/v € K such that (e1, - en)e & (%/Y) and x +vy. Then

y(er, - ey & (¥) and so  x|vk for all k € (e, - env. In particular

x|yt for t € (er, - en)v M S. Since x Ty, X238 we can reduce x/y
so that x and v have no common factor from S, we conclude that P + .

where az
for s € S, implies that a1 | x. Consequen

Now being a t-invertibl
.y Xn)\;‘ But xi = a1di)

But then x|vei for i=1,.,10 and consequently plei forall 1=1,
2, .., D This contradicts the assumption that s is @ GCD of di in S. As
this contradiction arises from the assumtion that 1€ (e, en)y we con

clude that (€1, - en)y = R and A = sk
In the more popular area we have the following result.
Corollary 1.12. With S as described in Lemma 1.11, if Pic(Rs) = 0 then

Pic(R) = 0.
Nustration of Example 1.10. According to [21], dim(K‘ + XKz [X]) =1

| other than XK (X] is principal we conclude that

and every prime ideal
is a product of pri-

for all f(X) € K + XKo[X] with £(0) # 0; f(X)
mes. S0, S = (X)) € R | f(0) # 0} meets the conditions of Lemma
1.11. But Rs = (Kq + XKe [X])xmm which is one dimensional again and

so has class group zero- So by Lemma 1.11, CI(R) = 0.
Remark 1.13. Lemma 1.11 seems to suggest the multiplicative mecha-

nism behind the following well known result of Nagata.
Theorem. Let R be a Krull domain and let S be generated by primes

of R.IfRsis a UED then so is R.
Fr the proof we note that S meets th
S0 CI(R) = 0; and for R Krull this means that R is a UFD.

e requirements of Lemma 1.11.

2 The case when G(R) = 0

Theorem 2.1. Let R be an integral domain. Then the following are equi-

' yalent.
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i GR) =0,

(i) Forall, d & T(R); 1J € T(R),

(i) Forall 1,d€& T(R); (1J); = R implies that 1J =K,
(iv) Forall I, J &€ T(R); "t =1 J

Proof. (i) = (i) = (iii) = (iv) are obvious.

(iv) = (i).‘ Assuming (iv) we show that every t-invertible t-ideal of R is in
fact invertible. Let 1 &€ T(R). Then I € T(R). By (i) IrhH" = mah?
=1". Now II'" € R andso " 2R, dut I = @' implies
that 1" = R.

Corollary 2.2. Let R be a #-domain; then G(R) = 0.

Proof. According to [21], R is a +.domain if and only if, for all finitely
generated AB & F(R); (AVE»\,)"1 =1(AB)" = AT'B™'. Now because for al-
11,J € TR),1andJ are v-ideals of finite type, part (iv) of Theorem 2.1
applies.

According to [1] R is a generalized GCD-domain (G-GCD domain)
if R satisfies one of the following equivalent conditions:

(i) Every finite intersection of non-zero principal fractional ideals is inver-
tible,
(ii) Every v-ideal of finite type is invertible (i.e. D¢(R) = Inv (R)).

Corollary 2.3. Let R be a PUMD. Then the following properties are

equivalent for R.

() GR) =0,

i) R is a *-domain,

i) Ris a G-GCD domain,

iv) D¢(R) is closed under the usual product of fractional ideals of R.
Proof. Because R is a PVMD, D¢(R) = T(R) and so each A € D¢(R)

is a finite intersection of principal fractional ideals. Now because D(R) =

T(R) (iv) « (i) by Theorem 2.1. Further, because a G-GCD domain is lo-

cally GCD [1] and because a Jocally GCD-domain is a *-domain [22, Theo-

rem 2.1] we have (iii) = (ii). Moreover by Corollary 2.2, (i) = (). All that

remains is to show that (iv) = (iif). But this is obvious because if I € D¢(R)

then I € D¢(R) and by (iv) I € De(R). So I = (I, = R. Con-

sequently every v-ideal of finite type of R is invertible.

We note that CI(R) = 0 implies G(R) = 0. Now recalling the
exact sequence 0 — Pic(R) — CI(R) — G(R) — 0 we note that for a
quasi local domain R, CI(R) = G(R); because in this case Pic(R) = 0.
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So for a quasi local domain R, CI(R) is trivial / torsion if and only if G(R)

is.
Now an interesting sufficient conditions for G (R) to be trivial.

Proposition 2.4. Let. R be an integral domain such that G(Bm) =
0 for each maximal ideal M. Then G(R) = 0.

The Proof is based on the following three lemmas.

Lemma 2.5. Let I be a v-ideal of finite type such that I is also of finite
type. Then IRs = (IRs)y (and so is @ v-ideal of finite type) for every
multiplicative set S.

Proof. If 1 and I'" are v-ideals of finite type, there exist finitely genera-
ted A, B € F(R) such that 1 = A, and ' = B,. Now by [18,
Lemma 4], (ARs)” = A'Rs = I"'Rs. But as (ARS)"1 = ( (ARS)\,)—1 =
((ARs),)™" (18, Lemma 4] = (ARs)™" = (IRs)”"  we have (IRs)™ = I''Rs.
Now ((IRS)"1 )'1 = (I"Rs)”" and because I" is a v-ideal of finite type we
have (I'Rs)™" = LBs = IRs.

Lemma 2.6. Let I be a t-invertible t-ideal of R and let S be a multiplica-
tive set of R. Then IRs is a t-invertible t-ideal of Rs.

Proof. Since (Il Ny = ((II Y )—1 = R, these ideals are of finite type.
Now using Lemma 2.5 we have Rs = (IT)Rs = ((")Rs). Now as I
and 17" are both v-ideals of finite type we have finitely generated A, B &

F(R) such that I = A, and 17" =Bu. S0 Re = ((IT™")Rs v = ((ABWRs)
— ((AB)Rs), = (ABP.)y (since AB is finitely generated) = (ARsBRs)y =
((ARs)v (BRs) )v = ((ARs) (BRs)o)e = (ARs BuRs) = (IRs-1"'Rs)w. So
Re = (IRl 'Rs)y (ABRs), = (ABRs) = (ARsBRsh = ((ARs): (BRs) )t =
((ARs), (BRs) ) = ({ARs) (BuRe)o ) = ((Rs)y (I"Re)u )i = (IRs 17" Rs)e

Lemma 2.7. Let 1 be a v-ideal of finite type in R. Then [ is invertible if
and only if IRm is principal for every maximal ideal M of R.

Proof. Let I be a v-ideal of finite type such that IBm 18 principal for ev-
ery maximal ideal M of R. Then for each M, (IRw)" is prisnipal and by

Lemma 2.5,

1Ry = IRul "Ry = IRu(IRM) " = Ru. But then 17" =N {@Rw =R;
where M ranges over all maximal ideals of R.

Proof of Proposition 2.4. Let 1€ T(R). By lLemma 2.7 it is sufficient
to show that IBm is principal for every maximal ideal M. But IRm is a t-inv-
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ertible t-ideal by Lemma 2.6 and IRy is invertible because G (Rv) = 0. Be-
cause in a quasi local domain invertible is principal, we conclude that IRy is
principal for each maximal ideal M of R and Lemma 2.7 applies.

Proposition 2.4 gives rise to a number of questions.

Question A. Do we have similar ‘sufficient condition for CI(R) to be
trivial?

The answer to this question is no, because; in a Dedekind domain R,
for every maximal ideal M, Cl(Ru) = 0 but CI{R) # 0 if R is not a
PID. However if Pic (R) = 0 then, because CI(R) = G (R), we can state
a positive result.

Corollary 2.8. Let R be such that Pic (R) = 0 then the following state-
ments are equivalent.
i CI(R)=0
(i) GER)=20
(i) Cl(Rm) = O for each maximal ideal M,
(iv) G(Rwm) = 0 for each maximal ideal M.

Corollary 2.9. Let R be a semi quasi local integral domain. If R satisfies
any one of the following we have CI(R) = 0.

(a) For every maximal ideal M, MRy is a t-ideal (b) R is one dimensional

(c) R is a locally GCD (d) R is a *-domain.

Question B. If CI(R) = 0 what can be said about Cl(Rs) for a multipli-
cative set S?

Question C. If G(R) = 0 what can be said about G (Rs) for a given 5?7

It would be.interesting to find some examples to indicate that the an-
swers to Questions B and C are note straightforward. It would also be
interesting to find the conditions, on R and S, under which CI(R) =0
(G(R) = 0) should imply CI(Rs) =0 (G (Rs) = 0).

Looking back, again, at the exact sequence
0 — Pic(R) — CI{R) — G(R) — 0, we note that if G(R) = 0 then Pic(R)
= CI(R). So the class of integral domains R with G (R) = 0 is interesting in
that at least for these integral domains R, CI(R) is a decent and well-

known group. For this reason we give a quick list of integral domains R wi-
th G(R) = 0.

Corollary 2.10. Let R be an integral domain. If one of the following is
satisfied by R then G(R) = 0.
(a) R is Prufer.
{(b) R is reflexive i.e. every ideal of R is a v-ideal [14].

(c) Every
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(c) Every maximal ideal of Risa t-ideal e.g- R is one d‘\mensiona\'.
(d) Bu is a +.domain for every maximal ideal M of R, 8- @ Ris locally

(b) R s reflexive, for all 1, JeTR) oach of 1018 2 v-ideal and hence 2 t-
invertible tideal and we can apply Theorem 2.1.
(c) By Proposition 1.6, for each maximal ideal M of R, G Rm) = 0. Now by
proposition 2.4, GR) = 0.
(d) BY Corollary 2.2, for each M, GRu) = 0 and by Proposition 0.4, G(R)
= 0.
(e) D (R) closed under the usual product implies that T (R) is closed under
the usual product and this, by Theorem 21,18 equ'wa\ent to GR) = 0.

Remark 2.11. None of the conditions (a), (b), {c) and (d) are necessary
for R to have GR) = 0. For if R = KX, Y}, where Kisa field, then be-
cause R 18 2 UFD, C R) = 0 and hence GR) = 0? but R is neither refle-
xjve not Prufer and dim R = 2, whereas the maximal t-ideals of R are of
rank One. Moreover R = KUXz, ¥, being one dimensiona\ local, has
the property that C! R) = GR) & 0, but R is not 2 x.domain by {22,
Example 2.8} Finally, the condition (e) does not seem 1O be necessary but
we cannot produce an example 10 support this view. 1t would be intere-
sting to have an example of R with G(R) = 0 and D(R) not closed under
the usual product. In fact it would be interesting to study integral domains
R with the property that for Al A BE F(R), (AB) = ABv-

We close this section with the mention of a class of integral domains
R with the property:
(CP) Whenever an ideal A 1S conta'med in the union of 2 family of primes
P}, & < Py for some j. These integral domains were discussed in a Mo-
re genera\ setting I (15} and [13}. We show that these integral domains R
have G(R) =0 '

Recall that 2 prime ideal P minimal over an ideal of the form 0 # (@)

(b) = ix e R\ xb € (a)} (# R) is called an associated prime of {a princi-
pal ideal of) R; see 41 Obvious\y every non-zero prime ‘deal of R contains
an associated prime of R. So if U(R) is the set of units of R we have R -
UR) = U P where P ranges over associated primes of R. Thus if R has

the (CP) property then every maximal ideal of Ris an associatep- 1703} an
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associated prime is a t-ideal. So in a (CP)-domain every maximal ideal is a
t-ideal. Now using (c) of Corollary 2.10 we have the following result.

Corollary 2.12. For a (CP)-domain R, C(R) = 0.

Remark 2.13. That an associated prime of R is a t-ideal, has been me-
ntioned a number of times but it has not been adequately proved even on-
ce. In view of the basic nature of the result we include the proof indicated
in [20].

Proof of the fact that an associated prime of R is a t-ideal.

Let P'be an associated prime of R. Then by Lemma 6 of [18], PRs is a
t-ideal. Now to show that P is a t-ideal let A be a finitely generated ideal of
R such that A < P. Then by Lemma of [18], (ARe)y = (ARp)y. If A, E
P then AW e =Rp and so (ARp) = (ARp)y = Re. But PRp is a t-ide-
al of Re and ARp a finitely generated ideal contained in PRp. So Rp = (AR-
pv & PRp a contradiction. So, for all finitely generated A < P, A, < P.

3. The case when CI(R) is torsion
(\
Proposition 3.1. Let R be an integral domain. Then the following pro-

perties are equivalent:

(i) CI{R) is torsion,

(i) For any t-invertible t-ideal I, (I"), is principal for some n,

(i) For any. two finitely generated ideals I, I, if (Iilo)y = R then (IP),
is principal for some n = 1.

Proof. (i) = (ii) = (i) are obvious. For (iii) = (i) let I € T(R). Then
I7"€T(R) and (ll=”1}f =R. So (™) =R and by (i) (") is principal
for some n = 1.

The case of CI(R) beoing torsion when R is a PUMD has been studied
in {19]. The following result can be traced back to [19].

Theorem 3.1. For a PVMD, R, the following are equivalent:
(i) CI(R) is torsion,
(i) For each pair x, y € R there exists n(x, y) € N such that (x") N (v™)
is principal,
(i) For every finitely generated ideal I, (I"), is principal for some n = 1,
(iv) CH{R[X]} is torsion.

In the study of torsion groups it is of interest to know the cases where
the property of being torsion causes the group to collapse.

Proposition 3.3. Let (R, M) be aquasi local domain with the property

that for al
that CI(R)
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that for all t-invertible tideals I, (" = (I,)* then Cl(R) torsion implies
that CI(R) is trivial.

Proof. If for 1 € TR), (") s principal then say ™, = dR. But
then (1) = dR; which implies that I, is invertible and hence principal.

4. The case when G (R) is torsion

Proposition 4.1. The following statements are equivalent for an integral
domain R.
() G(R)is torsion
(i) For any two finitely generated ideals 1y, Iz of R, if (hlv= R then
(r), (5), = R for some n =1, ’
(i) For every pair of finitely generated I, I € F(R), it (h, 2 =R then
(1) (2 =R for some n = L

The proof is obvious.

Theorem 4.2. The following statements are equivalent for a PVMD, R:
() GR)is torsion,
(i) For every finitely generated 1€ F(R), 1" is invertible for some N =
1,
(i) For a1, .., @m € K - {0} and for some =1, N (a%)is invertible.

Proof. (i) = (ii). Because in a PUMD every v-ideal of finite type is t-i-
nvertible, we have the implication.
(i) = (iii). Let a1, .., am € K - {0}. Then N (a;) =1 for some v-ideal of
finite type. By (i) (I"v 1s invertible for some n > 1. So by (iii) of Corollary
3.2 of [20], N (@1) = (N@H)y =@ is invertible.
(i) = (). f1is a t-invertible t-ideal then [ =N (a;j) where ai € K - {0}
and using (N @) =N (&) we conclude the proof.

Remark. This paper is a revised version of “On the class group” by these
authors (1984/85). Since then the work on class groups has gone on. What
was introduced as a mere facility for PUMD’s is being checked for its uses
in general integral domains. Of these we mention a result which is relevant
to our work in this paper.

Given that R is an itegral domain and x an u "determinate over R there
is an injective homomorphism & CI(R) — ClI (R [xl) defined by A — Alx].
Recently Gabelli [6] has proved that Q is an ssomorphism if and only if R
is integrally closed. Recall that R is a finite conductor domain if for all 3,

e ——— TR
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b € R - {0}, aR N bR is finitely generated. Noetherian and Coherent
domains are finite conductor domains.

Proposition. Given that R is a finite conductor domain, CI(R [x]) =0
implies that R is a GCD-domain.

Proof. Because A — A[x] is an injective homomorphism from CI(R)
— CI{R[x]) we conclude that CI(R) = 0. But then CI(R) = CI (R[X]).
This, by [G], means that R is integrally closed. Now an integrally closed fi-
nite conductor domain is a PUMD [18] and a PVMD, R with CI(R) = 0 is
a GCD-domain [19].
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