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PSEUDO-INTEGRALITY

DAVID E. ANDERSON, EVAN G. HOUSTON, MUHAMMAD ZAFRULLAH

ABSTRACT. Let R be an integral domain. An element u of the quotient
field of R is said to be psendo-integral over R if uf, C [, for some nonzero
finitely generated ideai / of R. The set of 21l pseudo-integral elements forms
an integrally closed (but pot necessarily pseudo-integraily closed) overring
R of R. Tt is shown that (RIX1) = R[X], where X is a family of indeterminates;
pseudo-integrality is analyzed in rings of the form D+ M; and an example s
given to show that pseudo-integrality does not behave well with respect to
focalization.

Introduction. Throughout this note, R will be an integral domain with guotient £ 2ld
K. We wish to introduce and study a new type of integrality which is intermediate de-
tween almost integrality and ordinary integrality. Our definition requires the so-ca led
v-operation. Denote by F(R) the set of nonzero fractional ideals of R. For f € F(R), set
I"' = {x € K : xI C R}. The v-operation on R is the map from F(R) into inself gi en
bwl—§L = (I}, The nonzero ideal I is said o be divisorial, or a v-ideal, it I = I,.
The v-operation is an example of a star-operation; the reader is referred to [6, Sections 32
and 34] for a discussion of the properties of the v-operation, which we shall use free y.

It is well-known that an element # € K is almost integral over R < there is a nonz :10
ideal F of R for which »f C I. Similarly, « is integral over R > uf C [ for some nonz 10
finitely generated ideal J of R. We now define an element u of K to be pseudo-integ ral
over R if uf, C I, (equivalenily, x/ ' C I™") for some nonzero finitely generated ide U f
of R. It is clear that u integral = u pseudo-integral = u almost integral.

We denote by R the set of elements of K which are pseudo-integral over R. In his the sis
[121, B. G. Kang aiso studies the ring R, but his results are for the most part specializ >d,
while our goal is a systematic study of pseudo-integrality.

In the first section, we show that £ is an integrally closed overring of R. Part of »ur
motivation for studying psendo-integrality arises from the fact that the integral closurt of
a domain often has desirable properties. For example, the integral closure of a Noether an
domain is a Kruil domain. A question that has been open for several years is the follc w-
ing: is the integral closure of a one-dimensional coherent domain necessarily Priifer? cf.
[91). Along these lines, we show, as a consequence of the fact that R is integrally clos »d,

that there is a large class of rings 7 for which T is a Pritfer v-multiplication domain. (K: ng
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[12, Theorem 5.10] has proved an equivalent result by different methods.) In addition,
we prove that pseudo-integrality behaves well under passage to the polynomial ring. We
close Section 1 with a discussion of pseudo-integrality in D + M examples.

It is well-known that almost integrality fails to be transitive, that the complete integral
closure of a domain need not be completely integrally closed, and thata localization of a
completely integrally closed domain need not be completely integrally closed. In Section
2 we show that pseudo-integrality has corresponding fauits.

Finaily, in Section 3, we show that in fact pseudo-integrality exhibits behavior that is
even more miscreant than that of almost integrality. We provide an example showing that
an elemoent which is pseudo-integral over K need not be pseudo-iniegral over an overring
T of R, even when T is psendo-integral over R. We also observe that the intersection of
pseudo-integrally closed domains need not be pseudo-integrally closed.

1. The Good.

DEFINITION.  Let R be a domain with guotient field K. An element x € K 18 pseudo-
integral over R if xF, C J, (equivalenily, x € [, : I,) for some nonzero finitely generated
ideal / of R.

As we show in Proposition 1.1 below, the set of pseudo-iniegral elements is an over-
ring of R, which we denote by R and call the pseudo-integral closure of R. We shall also
use R to denote the integral closure of R and R* to denote the complete integral closure
of R.jtisclear that R CRC R™.

PROPOSITION 1.1. R is the directed unior of the overrings I, = f, the union being
taken over all nonzere finitely generated ideals I of R. In particular, R is a ring.

PROOE. It is clear from the definition that R = U(J, : I,). That the union is directed
follows from (7, : LY (Jy 2 &) € (1), : (L), Finally, since each (I, : k) is aring, Ris
alse a ring. =

Recall that a domain R is said to be essential if it is the intersection of valuation
overrings each of which is alocalization of R. It is weil-known that an essential domain is
2 v-domain; a domain R is a v-domain if (JI), = R(equivalently, (fI7 Iyl = R)foreach
nonzero finitely generated ideal 7 of R. It is natural to call a domain K pseudo-integrally
closed if R = R. Fromthe equation (f~1)~" = [~} : 7! = [, : I, one easily obtains that 2
domain R is pseudo-integrally closed 4> R is a v-domain. Thus essential domains provide
examples of pseudo-integrally closed domains. In [13, 14} Nagata gives an example of
a completely integrally closed (hence pseudo-integraily closed) one-dimensional quasi-
local domain which is not a valuation domain. Thus pseudo-integraily closed domains
need not be essential.

We next point out situations in which the psendo-integral closure of 2 domain coin-
cides with either the integral closure or the compiete iniegral closure. Of course, if the
domain R is Noetherian, then B = B = R*. Now recall that if R is a domain, then R is
the directed union of {{f : [} : / is 2 nonzerc finitely generated ideal of R} . Thus if R
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has the property that [ ~1 is finitely generated for each nonzero finitely generated idez | f
of R, that is, if R is quasi-coherent [2], then R = R. Of course, this implies that R’ = R
for each coherent domain R. On the other hand, it is easy to see that R = R*ifRtas
the property that for each nonzerc ideal [ of R there is a finitely generated ideal J of R
for which I, = J,. It is known {16, Théoreme 1] that Mor domains, domains satisfyi g
the ascending chain condition on divisorial ideals, possess this property. Hence we c1n
resiate the well-known characterization of Krull domains as completely integrally clos 2d
Mori domains as follows: a domain R is 2 Krull domain < Risa pseudo-integraily clos >d
Mori domain {cf. {20]).

Tt is known that if R is a domain, then R* is integrally closed [13. p. 76} but need not e
completely integraily closed [8, Example 1]. We now provide the first step in the pre of
that pseudo-integral closure behaves similarly.

THEOREM 1.2. Let T be an overring of the domain R, and let x be an element of X.
Suppose that T is pseudo-integral over R and that x is integral over T. Then x is pseuc o-
integral over R. In particular, R is integrally closed.

PrOOFE. From the eguation of integrality satisifed by x, there are elements #1...., 4
€ T with x integral over § = Riug, ..., 4pl- Since each u; is pseudo-integral over R, the re
is a nonzero finitely generated ideal J; of R such that #;(J)» C (Jihv Let J = i1fthxm
uF, C J, for each i. Since (J, : 1) is a ring, it follows that S C (4, : J,). Now, since x is
integral over 5, there is 2 nonzero finitely generated ideal / = 5z; +-- -+ 52 of §wth
xF C I LetA = Jzg +--- + Jz,. Then A is a finitely generated ideal of R, and we shdl
complete the proof by showing that x € (4, : 4v)- First note that JSz; C Sz for eact i.
Thus Jf C fozy +- - -5 hzg © (4 -+dzghy = A,. Since xz; € [ for each i, we therefcre
have xA = x{Jz; + - - - + Jzz) © JI C A,. It follows that x € (A, : Ay). as desired.

Recall that a Priffer v-multiplication domain(PVMD) is 2 domain in which the fr: c-
tional v-ideals of finite type form a group under v-multiplication. Equivalently,a PYM D
is 2 v-dornain R in which /! is a v-ideal of finite type for each nonzexo finitely generai 2
ideal 7 of R. In [11] the authors introduced the notion of 2 UMT-domain. To define 9 is
property, Jet R be a domain and consider the polynomial ring RIX]. A nonzero pri e
ideal P of RIX] is said to be an upper to zero if PO R = (0); equivalently, P is an upf ex
to zero if P is the contraction of a nonzero prime from K[X]. Then R is a UM T-domu in
if each upper to zero contains an element £ with o(f), = R, where e(f) is the ideal gt a-
erated by the coefficients of f. it was observed [11, Proposition 3.2} that a domain K12
PVMD & R is an integrally closed UMT-domain, and it was shown {11, Proposition 3 3]
that the integral closure of a guasi-coberent UMT-domain is a PYMD. The question of
whether the hypothesis of quasi-coherence is necessary was ieft open. As an applicati »mn
of Theorem 1.2. we prove that the pseudo-integral closure of 2 UMT-domain is 2 PYM D.
We need one forther idea. An overring T of 2 domain R is said to be t-linked over & if
(F : (T : ITy) = T for each nonzero finitely generated ideal [ of Rfor whick I, = R. In
{5] it was shown that, for every domain R, R is t-linked over R.
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PROPOSITION 1.3. IfR is a UMT-domain, then R is a PVMD.

PROOF. Since (by Theorem 1.2) R is integrally closed, it suffices to prove that Risa
UMT-domain. Accordingly, let P be an upper to zero in RIX]. Then PN R[X] is an upper
10 zero in R{X], whence P M R[X] contains an element f with cp{f)y = R. Let F = cgif).
Then IR = cz(f), and the conclusion follows from the fact that R is t-linked over R. =

Next, we wish to show that pseudo-integrality behaves well under passage to the poly-
nomial ring. that is, that (R[X]) = RIX]. In fact, we shall do this in the more general con-
text of semigroup rings. The reader is referred to {7] for background and terminoiogy.
Thus let 5 be a commutative, additive, cancellative, torsion-free monoid, and Jet G be
the quotient group of 5. For each fractional ideal J of 5, let Jl={gecG:g+iC 5}
and J, = (J-1)~*. We then define 5 to be the set of elements g of G such that g +J, & J»
for some finitely generated ideal J of 5.

It is convenient to state one preliminary resuit.

LEMMA 1.4. Let R be @ domain, and let the domain T be a flat extension of R. Then
R C T. (This can fail without the flotness assumption—see Example 3.2 below.)

 PROOF. Since finite intersections of ideals are preserved by flat extensions, it is €asy
to see that T - IT = I-T for each finitely generated ideal I of R. The result now follows
casily. =

THEOREM 1.5. Let R be a domain and let § be as above. Then (R[S = RiS].

PROOE. letu € Randg € §. Then ul, C I, and g +.J, C J, for some finitely
generated ideals 1 of R and J of 5. It is easy to see that L = [[F] is 2 finitely generated
ideal of the semigroup ring RS} = R[{ X% : g € §} ] and that L, = L,{J,]. Now uXeL, C
(u)ig + 5] C L] = Ly, 50 that uX¢ € (R[S]). Thus R(S] C (RISD

_To establish the opposite inclusion, we first observe that (RISD C K{G] since K[G] is
completely integrally closed [7, Corollary 12.6(2)]. Let k be an element of K[G] which
is pseudo-integral over R[S]. Then &l, C I, for some nonzero finitely generated ideal £
of R(S]. For f = T a,X? € K[GI, let «(f) denote the content ideal of f, that is, c(f) is the
fractional ideal of R generated by the coefficients a,. Write «(7) for the ideal generated by
the coefficients of all the elements of . Since [ is finitely generated, we may write ¢(f) =
(k) for some k € I. By the content formula {15}, there is a positive integer m for which
R R = c(Ryc(ik). Since I C c(DRIS], we have that I, C (c(DRIS]y = c(D-RIS];
whence c(f,) C o(f),. Therefore, since ik € f,, we have o™ c(k) = Ry ek) =
SR c(hR) C (I ell,) © oD e(Dy. Thus (k)™ )y © (D™ )y, whenee c(k) C R
and k € RIG].

To complete the proof, it suffices to show that k € KI5]. since R[G]N Ki81 = R3]
We introduce a little more notation. For f = ¥ g% € K[G], let C(f) = ({ ¢ PIK[S] =
K1}, where J is the Gnitely generated ideal of § generated by {g : g # 0} . Define
C(F), where I is an ideal of K[5], in the natural way. Now RIS} C KI[5] is flat, so that
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(RIS C (K{5)) by Lemma 1.4. Since k € (RISD), we therefore have a nonzero finit 1y
generated ideal [ of K[S] with kI, C L. There is an element f € I with C()) = C(f) =
K{J}, as just described. We claim that C(/y) C C(I)y. This follows since f, & CUDy =
Kifl, = KR = C(L) © G = KL = KW/}, = C(Dy. As above, C(k) &
(om™h, - (CY™H),). Now C(I) = K[J] so that Cy™! = Kl(m + 1)J]. Thus by {7,
Theorem 16.6], we have C(k) C K[((m + 1))y : ((m+1)J),]. Hence ifk= T beX?,ttem
each g € ((m+ 1)), : ((m+ DI, € S. Hence k € K| {S1. as was to be shown. 5

COROLLARY 1.6. (RIX1) = RIX], where X = { X } is any set of indeterminates.

PrOOE. R[X] = RI[S], where § = @8, and each S« is a copy of the additive mon nd
of nonnegative integers. Define 5* = {g € G :mg+1 € Sforsomer € Sandalin> t}
(c£. [7. p. 151]). Clearly, § C § C 5". Since (®5a)" = ©5, = ®S,, we have that § = 5.
The resuli now follows from Theorem 1.5. =

Let V be a valuation domain of dimension > 2. Then V contains 2 ponumit £ with
M{F*) # (0). Hence by [6, Proposition 13.111, VX] is not (pscudo-) integrally clos 4,
and thus (VEXR) ';'2 VX3 = ViX]. Thus Corollary 1.6 has no counterpart for poyer

series rings.
We now turn to 2 discussion of how D + M constructions behave with respect to
pseudo-integrality.

LEMMA 1.7. Let V be a domain of the form F + M, where F is a field and M is he
maximal ideal of V. Let D be a subring of F, and fet R = D + M. Then D+ M C R

PROOF. We may assume that D is not a field. Letx = dim € D+M.Thendl, C L or
some nonzero fnitely generated ideal f of D. It follows that [ + M is a finitely genera ed
ideal of R and that (f + M), = L + M ([3, Theorem 2.1¢k)] and {1, Proposition 2.4 }).
Therefore, since (& +m)(F, + M) T L+ M. x € (I + M) I+ M) C E. =

PROPOSITION 1.8.  Let V and R be as above, and assume that Visa valuation dome in.
Fhen
(i) R = D + M if F is the quotient field of D, and
(ii) R = V if F properiy contains the quotient field of D.

PROOF. (i) Suppose that F is the quotient field of D. If D = F, then R=V=D+W.
Suppose that Eé: F. Then each nonzero finitely generated fractional ideal J of K has he

form J = o(J + M) for some element ¢ # 0 of the quotient field of K and SOme NORZ: 10
finitely generated (integral) ideal 7 of D {3, Theorem 2.1(k)1. Thus J, 1 Jy = (J+ M , :
T+ M)y = &+ M) - (b + M) = {4 : L,) + M. ]t follows that £ C D+ M. The ot er
inclusion follows from Lemma 1.7.

(ii) NMow suppose that F propexly contains the quotient field kof D-Choose u € K\ k
andletf = D+Du. ThenJ = [+M is a finitely generated fractional ideal of R, and J, = v
[3, Theorem 4.3 and its proof]. Hence J, @ Jy = V, whence V C R. To obtain the ot er
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inclusion, Jet A be a finitely generated ideal of R. By {3, Theorem 2.1(k)] A = c(B+M)
for some finitely generated D-submodule Bof F.f Bisnota fractional ideal of D, the
A, 1 A, = ¢V : ¢V = V [3, Theorem 4.3(2)]. I B is a fractional ideal of D, then, as i1
the proof of (i) above, A, : A, C D +M C V. Thus R C V, and the proof is complete. «

We close this section by making use of the D + M analysis to exhibit a domain R fc -
whichR;:R’%RgR*.

ExaMPLE 1.9, Ler Fy g Fy ;; F3 ;: Fy4 be fields with F, algebraic over Fy and F .

algebraically closed in F. Let V be a discrete rank one valuation domain ( DVR) of th '
form Fa+M, and let W be 2 DVR of the form 3 +N and having quotient field Fa. F inall) .
set R=(F1 + M+ M, Ry = (Fo + N} + M, and Ry = W + M. Then
(i) V is the complete integral closure of each of R, Ry, and Rs;
(ii} Ry isthe pseudo-integral closure of R and Ry, and B3 is pseudo-integrally closed
and
(iii} R, is the integral closure of R.

In particular, R C R C RC R*.
# # #

PROOF. (i) Simce M is an ideal of each ring invelved and VM C M, it follows that '
is coniained in the complete integral closure of each ring involved. On the other hand V
being a DVR, is completely integrally closed.

(ii) It follows from Proposition 1.8 that W is the pseudo-integral closure of each 0
the rings Dy = F; + N and D, = F; + N. Then, since each of Dy, P, and W has quotien
feld Fy, it follows (again from Proposition 1.8) that R = (Ry) = (K:) = Rs.

(ii1) This is well-known [3, Theorem 2.1(b)]. ;

REMARK 1.10. For 2 concrete example of the situation above, set Fj = Q,F, =@
(= the algebraic closure of Q), F3 = C, Fy = C((X)), V = FullYF (with M = Y. 47D
and W = FIXJ(with N = XFIXE).

2. The Bad. We begin this section by showing that pseudo-integrality, like almos
integrality, fails to be transitive, and that the pseudo-integral closure of a domain need no
be pseudo-integraily closed. In fact, we can use the classic example of Gilmer-Heinze
[8] for our purpose. ‘

EXaMPLE 2.1. Let k be a fiddd, set R = K[{X¥*iy"@=0y 2] and set T =
k[{ XW}f;O]. Then
O R=R=R=T;
() T=17T =KX, Y]; and
(iit) ¥ is pseudo-integral over T but not over R.

PROOF. (i) ThatR* = T is [6, Exercise 3, p. 144]. Moreover, T is an integrally closec
Mori domain [4, Example 4.6(b)]. Since T is obviously integral over R, (i) follows.
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(ii) Since T is a Moxi domain, T = T™, and it is easy i0 see that T = k[X, ¥1.

(iii) That ¥ is pseudo-integral over T follows from T = T". Finally, ¥ is not alm( st
integral, much less pseudo-integral, over K since R =T. ‘ w

Recall that if R is the ring of entire functions, then Ris 2 completely integrally clos :d
Bézout domain, but that some localizations of R fail to be completely integrally clos :d
(cf. [6, Exercises 17, 19, and 21, pp. 147-148]). (This example is infinite dimensional, t ot
Sheldon [17, Example II} gave a two-dimensional example.) A similar siteation exi: ts
with respect to pseudo-integrality, as the following result shows.

PROPOSITION 2.2.  Let R be a domain and let S be a multiplicatively closed sub: et
of R. Then R)ys C (Rs). However, proper containment is possible. In particular, ¢
property of being pseudo-integrally closed is not necessarily preserved upon passage o
a localization.

Proor. That B C (Es) follows from Lemma 1.4. (An alternate proof can be bas «d
on {19, Lemma 4]. Since 1/ 5 € (Bs) for each 5 € S, we have (R)s C (Rs). To shew
that proper containment is possible, we examine an example of Heinzer [10]. This is w
example of an essential domain R (Helozer uses D) containing a prime ideal P such ¢ at
R, is ot essential. In fact, R, = k+ M, where M is the maximal ideal of a valuation i g
W of the form F+ M and k ;: F are fields. By Proposition 1.8, (R,) = W. However, &,

being essential, is psevdo-integrally closed. Therefore, if we set § = R\ P, we have &t at
(R)S = Rs = Rp, while (’Rjg) = (;?;) = W, ®

REMARK. If R is a Mori domain, then (R)s = (Rs) for each muitiplicatively cios :d
subset S of R ([12, Lewma 5.111.

3. The Ugly.

REMARK3.1. The intersection of integrally closed domains (contained in some €01 2-
mon feld) is integrally closed. Similarly, the intersection of completely integrally clos :d
dowmains is completely integrally closed. However, the domain T of Exampie 2.1, bei g
integrally closed, is the intersection of a family of valuation domains inside jts quotit ot
field, and. since valuation domains are psendo-integraily closed, T is the intersection of
pseudo-integraily closed domains. Of course, T itself is not pseudo-integrally closed.

EXAMPLE 3.2. Let V = F + M be a valuation domain with maximal ideal M a wd
with F  field. Let D be a pseudo-integrally closed subring of F such that D contain: a
field k. Suppose that F is the guotient field of D. Set R=k+MandT=D+M Then T
is pseudo-integral over R, but R € T.

ProorF. By Proposition 1.

8, R=VandT =D+ M= T Thus ¥, hence also T, is
pseudo-integral over R, but R € T

=
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