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Abstract. An extension D ⊆ R of integral domains is strongly t-compatible

(resp., t-compatible) if (IR)−1 = (I−1R)v (resp., (IR)v = (IvR)v) for every

nonzero finitely generated fractional ideal I of D. We show that strongly
t-compatible implies t-compatible and give examples to show that the converse
does not hold. We also indicate situations where strong t-compatibility and
its variants show up naturally. In addition, we study integral domains D such

that D ⊆ R is strongly t-compatible (resp., t-compatible) for every overring R

of D.
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1. introduction

Throughout this article, let D be an integral domain with quotient field K. Let
F (D) be the set of nonzero fractional ideals of D, f(D) the set of nonzero finitely
generated fractional ideals of D, and I(D) the set of nonzero integral ideals of D.
Recall that a star operation ∗ on D is a function I 7→ I∗ on F (D) with the following
properties:

If I, J ∈ F (D) and 0 ∕= x ∈ K, then

(i) D∗ = D and (xI)∗ = xI∗;
(ii) I ⊆ I∗ and if I ⊆ J , then I∗ ⊆ J∗; and
(iii) (I∗)∗ = I∗.

For a quick review of properties of star operations, the reader may consult [23,
Sections 32 and 34]. An I ∈ F (D) is said to be a ∗-ideal if I∗ = I, and a ∗-ideal I
has finite type if I = J∗ for some J ∈ f(D). A star operation ∗ is of finite type if
I∗ =

∪{J∗ ∣ J ∈ f(D) and J ⊆ I} for every I ∈ F (D). To any star operation ∗, we
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can associate a star operation ∗s of finite type by defining I∗s =
∪{J∗ ∣ J ∈ f(D)

and J ⊆ I} for every I ∈ F (D). Clearly I∗s ⊆ I∗, and if I is finitely generated,
then I∗ = I∗s .

Recall that for I ∈ F (D), we have I−1 = D :K I = {x ∈ K ∣ xI ⊆ D}. The
functions defined on F (D) by I 7→ Iv = (I−1)−1 and I 7→ It =

∪{Jv ∣ J ∈ f(D)
and J ⊆ I} are well known star operations, known as the v- and t-operations.
An I ∈ F (D) is divisorial or a v-ideal (resp., t-ideal) if Iv = I (resp., It = I).
By definition, the t-operation is the finite-type star operation associated to the
v-operation.

Let D be a subring of an integral domain R. We call D ⊆ R an extension
of integral domains and call R an overring of D if R ⊆ K. We shall use the
v- and t-operations extensively, and we shall assume a working knowledge of these
operations. Following [15, 16], an integral domain R is said to be t-linked over its
subring D if I−1 = D implies that (IR)−1 = R for every I ∈ f(D). One reason
for writing this article is the following comment in [42, page 443]. “We note that
in each of the extensions D ⊆ R, discussed above, R is t-linked over D, i.e., for
every I ∈ f(D), I−1 = D implies (IR)−1 = R ([15]). So in each case, there is a
homomorphism � : Clt(D) −→ Clt(R) defined by �([I]) = [(IR)t] ([3]). However,
if R is t-linked over D, the extension D ⊆ R may not satisfy any of (a)-(d) and
may not satisfy any of the equivalent conditions. (These facts will be included in a
detailed account in the promised article.)” The “equivalent conditions” mentioned
in the quote are the equivalent conditions of [42, Proposition 2.6]. (The third author
thanks Jesse Elliott for reminding him of that promise.) Our main task will be to
provide the example(s) hinted at in the above quote. The rest of the plan will be
presented after we have given sufficient introduction.

Using vX - (resp., tX -) to denote the v- (resp., t-) operation on an integral domain
X, we shall prove and record the consequences of the following theorem.

Theorem 1.1. Let R be an integral domain with quotient field L, and let D be a
subring of R with quotient field K. Then the following statements are equivalent.

(1) IvD
R ⊆ (IR)vR

for every I ∈ f(D).
(2) (IR)vR

= (IvD
R)vR

for every I ∈ f(D).
(3) ItDR ⊆ (IR)tR for every I ∈ F (D).
(4) (IR)tR = (ItDR)tR for every I ∈ F (D).
(5) (IR)vR

= (ItDR)vR
for every I ∈ F (D).

(6) If I is an integral t-ideal of R such that I ∩D ∕= (0), then I ∩D is a t-ideal
of D.

(7) If I is a principal fractional ideal of R such that I ∩D ∕= (0), then I ∩D is
a t-ideal of D.

Moreover, if the following hypothesis holds:

(8) R :L IR = ((D :K I)R)vR
for every I ∈ f(D),

then statements (1) - (7) all hold.

According to [8, Proposition 1.1], via [42, Proposition 2.6], conditions (1)-(6) are
all equivalent and an extension D ⊆ R of integral domains is called t-compatible if
it satisfies any of (1)-(6) (e.g., (IR)tR = (ItDR)tR for every I ∈ F (D)). (These are
the equivalent conditions hinted at in the quote above.) More generally, as in [4],
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given star operations ∗D and ∗R on integral domains D ⊆ R, we say that ∗D and
∗R are compatible if (IR)∗R = (I∗DR)∗R for every I ∈ F (D). We shall prove that
(1)-(7) are all equivalent and that all of them are implied by the hypothesis (8).
Our task will then be to give examples (i) that would show that none of (1)-(7)
implies the hypothesis (8) of the theorem and examples (ii) that would give t-linked
overrings that do not satisfy any of (1)-(7) and the conditions (a)-(d) of [42, page
443] which are listed below.

(a) I−1R = (IR)−1 for every I ∈ f(D).
(b) (I−1R)vR

= (IR)−1 for every I ∈ f(D).
(c) I−1R = (IR)−1 for every I ∈ F (D).
(d) (I−1R)vR

= (IR)−1 for every I ∈ F (D).

Clearly (c) ⇒ (a) ⇒ (b) and (c) ⇒ (d) ⇒ (b). In Theorem 3.7 (resp., Theo-
rem 3.9), we determine the overrings of D that are characterized by condition (b)
(resp., condition (d)). If D is integrally closed, then (a) holds for every overring R
of D if and only if D is a Prüfer domain (Corollary 4.3).

Let us call an extension D ⊆ R of integral domains strongly t-compatible if
D ⊆ R satisfies the hypothesis (8) of Theorem 1.1 (i.e., if (IR)−1 = (I−1R)vR

for every I ∈ f(D), or equivalently, condition (b) above holds) and call D ⊆ R
v-compatible if (IR)vR

= (IvD
R)vR

for every I ∈ F (D). Thus v-compatibility
implies t-compatibility. In Section 2, we show that strong t-compatibility implies
t-compatibility and give examples to show that the converse is not true. Section
3 is devoted to indicating the situations in which strong t-compatibility and some
of its variants appear naturally, and we characterize the domain extensions where
strong t-compatibility holds. Finally, in Section 4, we study integral domains D
such that D ⊆ R is t-compatible for every overring R of D and relevant notions.

We would like to thank the referee for his/her careful reading of the paper and
thoughtful suggestions.

2. Proof of Theorem 1.1 and Examples

It would help if the readers knew some old notational conventions in case we
use such notation or refer to articles that use that notation. We shall follow the
convention that the inverses, and hence the v-operations, are with respect to the
relevant rings (rings to whose (fractional) ideals the operation is applied). For
example, if I ∈ F (D), we shall use (IR)−1 to mean R :L IR, where L = qf(R),
(I−1R)v to mean (I−1R)vR

, where I−1 = D :K I, and (IvR)v to mean (IvD
R)vR

if
no confusion is foreseen. In this section, we shall prove Theorem 1.1 and construct
the examples. We start with a general result to cover some more ground.

Lemma 2.1. Let D ⊆ R be an extension of integral domains, and let I ∈ F (D)
such that (IR)−1 = (I−1R)v. Then (IR)v = (IvR)v.

Proof. Clearly (IR)v = ((IR)−1)−1 = ((I−1R)v)
−1 = (I−1R)−1 by hypothesis.

Let x ∈ Iv; then xI−1 ⊆ D. Thus xI−1R ⊆ R, and hence x ∈ (I−1R)−1 = (IR)v.
Thus Iv ⊆ (IR)v, which gives IvR ⊆ (IR)v, and hence (IvR)v ⊆ (IR)v. Finally,
since I ⊆ Iv, we have IR ⊆ IvR, and thus (IR)v ⊆ (IvR)v. Equality follows. □
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Proof of Theorem 1.1. For the proof, we adopt the following approach. We note
that the hypothesis (8) of Theorem 1.1 implies (2) by Lemma 2.1. Then we show
that (1)-(7) are all equivalent. Using the fact that (1)-(6) are all equivalent (in light
of [4, Section 4] and [8, Proposition 1.1]), we show (6) ⇒ (7) ⇒ (1) to complete
the proof.

(6) ⇒ (7) Suppose that xR ∩ D ∕= (0) for some x ∈ L. Then xR ∩ D =
(xR ∩R) ∩D is a t-ideal of D by (6) since xR ∩R is an integral t-ideal of R.

(7) ⇒ (1) Let I ∈ f(D) (we may assume that I ∈ I(D)), and recall that
(IR)v =

∩{xR ∣ x ∈ L and IR ⊆ xR}. For every x ∈ L such that IR ⊆ xR, we
have I ⊆ IR ⊆ (IR)v ⊆ xR, and thus I ⊆ xR ∩D. Since xR ∩D is a t-ideal of D
by (7) and I is finitely generated, we have Iv = It ⊆ xR ∩D. This gives Iv ⊆ xR
for every xR containing IR, and hence Iv ⊆ (IR)v. Thus IvR ⊆ (IR)v. □

From Theorem 1.1, it follows that strong t-compatibility implies t-compatibility.
For the remainder of the task at hand, let us ask: Do any of the conditions (1)-
(7) imply the hypothesis (8) of Theorem 1.1? In other words, is it true that t-
compatibility implies strong t-compatibility? To answer this question, in the nega-
tive, we use the following example.

Example 2.2. Let D be a one-dimensional local (Noetherian) domain that is not a
DVR, and let R be its integral closure. Then R is t-linked over D ([15]). Let I be a
nonzero nonprincipal ideal of D. Then II−1R = dR for some nonunit d ∈ R. Thus
I−1R = dR(IR)−1 ∕= (IR)−1, and as we are working in a PID, I−1R = (I−1R)v.
Hence (IR)−1 ∕= (I−1R)v; so D ⊆ R is not strongly t-compatible. That D ⊆ R
is t-compatible follows from the following result provided by Evan Houston [29]
as a sleek alternative to our, somewhat cumbersome, earlier proof. For a specific
example, let D = ℚ[[X2, X3]] ⊆ R = ℚ[[X]] and I = (X2, X3) be the maximal
ideal of D. Then (I−1R)v = R and (IR)−1 = X−2R; so (IR)−1 ∕= (I−1R)v.

Lemma 2.3. ([29]) Let D be a Noetherian integral domain with integral closure
R, and let I ∈ f(D). Then (IvR)v = (IR)v.

Proof. Let x ∈ (IR)−1; then xI ⊆ R. Since R is integral over D and I is finitely
generated, there is a (necessarily) finitely generated ideal J of D with xIJ ⊆ J .
Thus xIvJv ⊆ Jv. Since Jv is finitely generated, this yields xIv ⊆ R, i.e., xIvR ⊆ R.
Hence x ∈ (IvR)−1; so (IR)−1 ⊆ (IvR)−1. Taking inverses, we have (IvR)v ⊆
(IR)v. The reverse inclusion is obvious; so (IvR)v = (IR)v. □

Problem 2.4. Characterize the extensions D ⊆ R of integral domains such that
t-compatibility implies strong t-compatibility.

Example 2.2 is somewhat limited in that the extension D ⊆ R that it provides
is t-compatible. We next give an example that will do the job completely. For this,
we need to quote an example from Mimouni [34, Example 2.10]. (The purpose of
this example was to show that there are w-ideals that are not t-ideals.)

Example 2.5. Let R = ℚ(
√
2)[[X,Y, Z]], where X,Y, Z are indeterminates over ℚ.

Then R = ℚ(
√
2)+M is a 3-dimensional integrally closed local (Noetherian) domain

with maximal ideal M = (X,Y, Z)R. Now set D = ℚ + M . Then D = ℚ + M
is a local (Noetherian) domain with integral closure R ([10]). Since the maximal
ideal M is common to both D and R, we have M = MR; and so for the prime
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ideals P1 = XR,P2 = (X,Y )R of R, we have P1 ⊊ P2 ⊊ M . We claim that P2

is not a t-ideal of D, while M is a t-ideal of D. This follows from the following
observations. Since ℎtR(P2) = 2, we have R = R :P2 = (P2 :P2) = D :P2. Similarly,
R = R :M = M :M = D :M . Now, as M−1 = D :M ⊋ D, we must have Mv ⊊ D.
But since D = ℚ +M is local, Mv = M . Next, since R = D : P2 = P−1

2 = M−1,
we have (P2)t = (P2)v = Mv = M . But as P2 ⊊ M , we conclude that P2 is
not a t-ideal of D. From this example, we also have that every overring of D is
t-linked because the only maximal ideal M of D is a v-ideal, and hence a t-ideal
([15, Theorem 2.6]).

Now reason as follows. By [8, Proposition 1.1] (or Theorem 1.1), an extension
D ⊆ R of integral domains is such that (IR)vR

= (IvD
R)vR

for every I ∈ f(D) if
and only if every t-ideal of R contracts to a t-ideal of D or to (0). So if there is an
R with D ⊆ R an extension of integral domains and a nonzero t-ideal J of R with
J ∩D a nonzero non-t-ideal of D, then (IR)vR

∕= (IvD
R)vR

for some I ∈ f(D). If
R is also t-linked over D, then we have our example that was promised in [42].

Example 2.6. Let us go back to Example 2.5. In D = ℚ +M , we have a chain
of prime ideals P1 ⊊ P2 ⊊ M for which P2 is not a t-ideal. By [23, Corollary 19.7],
there is a valuation overring T of D with maximal ideal M ′ and a chain of proper
prime idealsQ1 ⊊ Q2 ⊊ M ′ such thatQi∩D = Pi andM ′∩D = M . It is well known
that every nonzero ideal in a valuation domain is a t-ideal. Thus Q2 is a t-ideal in T
that contracts to a non-t-ideal P2 in D; so D ⊆ T is not t-compatible. As we noted
in the explanation of the Mimouni example, T is t-linked over D = ℚ+M . So as we
reasoned above, there is a (finitely generated) nonzero ideal I of D = ℚ+M , which
we do not know anything about, such that (IT )vT

∕= (IvD
T )vT

. Actually, I = P2

fills the bill since (P2T )vT
= (P2T )tT = P2T ⊆ Q2, while ((P2)vD

T )vT
= (MT )vT

=
(MT )tT = MT ⊆ M ′, and P2T ∕= MT since P2T ∩D = P2 and MT ∩D = M .

Finally, will Example 2.6 take care of (a)-(d)? Let us check. First off, the example
we have is a Noetherian domain; so we only need to take care of (a) and (b). Next,
every fractional ideal I of an integral domain D is expressible as I = x−1J , where
J is an integral ideal of D and 0 ∕= x ∈ D; so (a)-(d) can be stated for integral
ideals because the denominators cancel out in each case.

From Lemma 2.1, we note that if (IR)v ∕= (IvR)v for some I ∈ I(D), then
(IR)−1 ∕= I−1R and (IR)−1 ∕= (I−1R)v.

Example 2.7. Going back to Example 2.6, the ideal I of D for which (IT )vT
∕=

(IvD
T )vT

is precisely the ideal for which (IT )−1 ∕= I−1T and (IT )−1 ∕= (I−1T )v.
So Example 2.6 serves as an example of an extension D ⊆ T of integral domains
with T a t-linked overring of D for which (1)-(7) and (a)-(d) do not hold, and thus
D ⊆ T is not strongly t-compatible.

3. Applications and related results

Section 2 seems to indicate that the key assumption is thatD ⊆ R is an extension
of integral domains such that (IR)−1 = (I−1R)v for certain types of nonzero ideals
I of D (that includes finitely generated ideals). In our next proposition, we replace
the I ∈ f(D) hypothesis in Theorem 1.1 by I ∈ F (D).
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Proposition 3.1. Let R be an integral domain with quotient field L, and let D be
a subring of R with quotient field K. Then statements (1) and (2) are equivalent,
(2) ⇒ (3), and statements (3)-(7) are equivalent.

(1) IvD
R ⊆ (IR)vR

for every I ∈ F (D).
(2) (IR)vR

= (IvD
R)vR

for every I ∈ F (D).
(3) ItDR ⊆ (IR)tR for every I ∈ F (D).
(4) (IR)tR = (ItDR)tR for every I ∈ F (D).
(5) (IR)vR

= (ItDR)vR
for every I ∈ F (D).

(6) If I is an integral t-ideal of R such that I ∩D ∕= (0), then I ∩D is a t-ideal
of D.

(7) If I is a principal fractional ideal of R such that I ∩D ∕= (0), then I ∩D is
a t-ideal of D.

Moreover, if R :L IR = ((D :K I)R)vR
for every I ∈ F (D), then statements

(1) - (7) all hold.

Proof. Clearly (1) ⇔ (2). That (2) ⇒ (3) and statements (3)-(7) are all equivalent
follow from Theorem 1.1.

For the “moreover” statement, suppose that R:LIR = ((D:KI)R)vR
for every I ∈

F (D). Then (2) holds since (IR)−1 = (I−1R)v ⇒ (IR)v = (IvR)v by Lemma 2.1.
Thus (1)-(7) all hold by the above remarks. □

Proposition 3.1 leaves one thinking “What if ‘t-ideal’ is replaced by ‘v-ideal’ in
(6) and (7) of Proposition 3.1?” The following result provides an answer.

Proposition 3.2. Let D ⊆ R be an extension of integral domains. Then the
following statements are equivalent.

(1) IvD
R ⊆ (IR)vR

for every I ∈ F (D).
(2) (IR)vR

= (IvD
R)vR

for every I ∈ F (D).
(3) If I is an integral v-ideal of R such that I ∩D ∕= (0), then I ∩D is a v-ideal

of D.
(4) If I is a principal fractional ideal of R such that I ∩D ∕= (0), then I ∩D is

a v-ideal of D.

Proof. Clearly (1) ⇔ (2).

(2) ⇒ (3) Let I be an integral v-ideal of R with I ∩ D ∕= (0). Then (0) ∕=
I ∩D ⊆ (I ∩D)v ⊆ (I ∩D)vR ⊆ ((I ∩D)R)v ⊆ Iv = I by (1). Thus (I ∩D)v ⊆ I
implies that (I ∩D)v ⊆ I ∩D, which forces I ∩D = (I ∩D)v and the conclusion
that I ∩D is a v-ideal of D.

(3) ⇒ (4) Let L be the quotient field of R, and let 0 ∕= x ∈ L such that
xR ∩D ∕= (0). Then xR ∩D = (xR ∩R) ∩D is a v-ideal of D by (3) since xR ∩R
is an integral v-ideal of R.

(4) ⇒ (1) Let I ∈ I(D), and recall that (IR)v =
∩{xR ∣ x ∈ L and IR ⊆ xR}.

For every xR in the intersection, we have I ⊆ xR ∩ D. Thus Iv ⊆ xR ∩ D since
xR ∩D is a v-ideal of D by (4). Hence Iv ⊆ xR, and thus IvR ⊆ xR for every xR
such that IR ⊆ xR. Hence IvR ⊆

∩
{xR ∣ x ∈ L and IR ⊆ xR} = (IR)v for every

I ∈ I(D), and thus for every I ∈ F (D) as well. □
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Recall that an extension D ⊆ R of integral domains that satisfies the equivalent
conditions of Proposition 3.2 (e.g., (IR)vR

= (IvD
R)vR

for every I ∈ F (D)) is
called v-compatible. Note that a v-compatible extension is t-compatible. The
converse is true for Noetherian domains, but not in general (see Example 4.6).
Thus (1)-(7) need not be equivalent in Proposition 3.1 (since (4) ⇒ (2) need not
hold), but (1)-(7) are equivalent in Theorem 1.1. Moreover, by Proposition 3.1,
if R :L IR = ((D :K I)R)vR

for every I ∈ F (D), then the extension D ⊆ R is
v-compatible. The converse is not true since in the Noetherian case, t-compatibility
does not imply strong t-compatibility by Example 2.2.

Example 3.3. Let R = Int(D), the ring of integer-valued polynomials over the
integral domain D. Then the extension D ⊆ R satisfies the “moreover” hypothesis
of Proposition 3.1 precisely. That is, (I(Int(D)))−1 = (I−1Int(D))v for every
I ∈ F (D). This result follows from [11, Lemma 3.1(1)(2)]. Indeed, Propositions 3.1
and 3.2 apply to this particular situation.

Apart from Example 3.3, most well known examples that could benefit from
Proposition 3.1 fall under the category of extensions D ⊆ R such that (IR)−1 =
I−1R, i.e., I−1R is divisorial, for every I ∈ F (D). Because there are a number of
known cases of this type, it seems in order to restate Proposition 3.1 for this special
case.

Corollary 3.4. Let R be an integral domain with quotient field L, and let D be a
subring of R with quotient field K. If R :L IR = (D :K I)R for every I ∈ F (D),
then the following statements hold.

(1) (IR)vR
= IvD

R for every I ∈ F (D).
(2) (IR)tR = ItDR for every I ∈ F (D).
(3) (IR)vR

= (ItDR)vR
for every I ∈ F (D).

(4) If I is an integral t-ideal of R such that I ∩D ∕= (0), then I ∩D is a t-ideal
of D.

(5) If J is an integral t-ideal (resp., v-ideal) of D, then JR is an integral t-ideal
(resp., v-ideal) of R.

(6) If I is a principal fractional ideal of R such that I ∩D ∕= (0), then I ∩D is
a v-ideal of D.

Proof. (1) (IR)v = ((IR)−1)−1 = (I−1R)−1 = (I−1)−1R = IvR by hypothesis.

(1) ⇒ (2) Recall that (IR)tR = ∪{JvR
∣ J ∈ f(R) and J ⊆ IR}. For each

J in the definition, J ⊆ J1R for some finitely generated ideal J1 ⊆ I, and so
JvR

⊆ (J1R)vR
= (J1)vD

R ⊆ ItDR by (1). Thus (IR)tR ⊆ ItDR. The reverse
inclusion follows from Proposition 3.1(3); so (IR)tR = ItDR.

The statements (3) and (4) follow from Proposition 3.1. (1), (2) ⇒ (5) is obvious.
(1) ⇒ (6) follows from Propositions 3.1 and 3.2. □

Corollary 3.4 becomes useful when for example:

(A) R = D[X], where X is an indeterminate over D. Nishimura [35] proved
that (ID[X])−1 = I−1D[X] for every I ∈ F (D), and (1) of Corollary 3.4. See also
Hedstrom and Houston [26], where (2) of Corollary 3.4 was proven for this case.

(B) R = D +XL[X], where K is a subfield of a field L. The K = L case was
touched on in [12], where it was shown using direct methods that (1) of Corollary 3.4
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holds. The K ⊊ L case was considered in [13]. But both of these fall under what
came to be known as the “generalized D + M construction” ([10]), which can be
described as follows: Let T be an integral domain of the form L + M , where L
is a field and M is a maximal ideal of T . Then let D be a subring of L, and let
R = D+M . The first author and Rykaert [6] noted that (IR)−1 = I−1+M = I−1R
for every I ∈ I(D). The special case when T is a valuation domain was studied by
Bastida and Gilmer in [9]. It is interesting to note that in all of these cases, R is
at least a faithfully flat extension of D.

A number of the known examples where Theorem 1.1 seems to be at work fall
under the case where D ⊆ R is an extension of integral domains with the property
that R :L IR = (D :K I)R for every I ∈ f(D). Not all such extensions are flat.
In the following corollary, we replace the I ∈ F (D) hypothesis of Corollary 3.4 by
I ∈ f(D). Recall that an integral domain D is a Prüfer v-multiplication domain
(PVMD) if the set of fractional v-ideals of finite type of D forms a group under
v-multiplication.

Corollary 3.5. Let R be an integral domain with quotient field L, and let D be a
subring of R with quotient field K. If R :L IR = (D :K I)R for every I ∈ f(D),
then the following statements hold.

(1) (IR)vR
= (IvD

R)vR
for every I ∈ f(D).

(2) (IR)tR = (ItDR)tR for every I ∈ F (D).
(3) (IR)vR

= (ItDR)vR
for every I ∈ F (D).

(4) If I is an integral t-ideal of R such that I ∩D ∕= (0), then I ∩D is a t-ideal
of D.

(5) If D has the additional property that I−1 is of finite type for every I ∈ f(D)
(e.g., if D is a PVMD), then the following statements hold.
(a) (IR)vR

= IvD
R for every I ∈ f(D).

(b) (IR)tR = ItDR for every I ∈ F (D).
(c) (IR)vR

= (ItDR)vR
for every I ∈ F (D).

(d) If J is an integral t-ideal of D, then JR is a t-ideal of R.

The known cases that fall under the hypothesis of Corollary 3.5 are of the fol-
lowing types.

(i). When R is a ring of fractions of D. This case was studied in [40].

(ii). When R is a flat overring of D. This case was studied in [39], also see
Fontana and Gabelli [18, Proposition 0.6]. But in each case, the authors were
interested in proving (1) of Corollary 3.5.

(iii). When R = D + XDS [X], where S is a multiplicative subset of D ∖ {0}
and X is an indeterminate over D. In [41, Lemma 3.1], it was shown that the
hypothesis of Corollary 3.5 holds in this case and only parts of (5) above were used.
A construction that is closely related to R = D + XDS [X] is the construction
T = D + XD[X], where D is a subring of D, which was studied in [2] and has
received considerable attention from a number of authors. Kabbaj and the first
two authors in [5, Lemma 3.6] showed that T = D + XD[X] is a flat D-module
if and only if D is a flat D-module; and so for D a flat D-module, the hypothesis
of Corollary 3.5 holds. They too used parts of (5) above in their work. This
construction, which is customarily denoted by A+XB[X], can do much more than
D +XDS [X] can. A reader interested in this construction may want to check the

8



references given in [5] and [33]. We have that the extension D ⊆ D + XD[X]
satisfies the hypothesis of Corollary 3.4 or that of Corollary 3.5 if and only if
D ⊆ D does. Indeed, let I ∈ F (D). By [5, Lemma 2.1], we have (IT )−1 =
(I−1 ∩ (ID)−1)+X(ID)−1[X] = I−1+X(ID)−1[X]. Hence (IT )−1 = I−1T if and
only if (ID)−1 = I−1

D.

(iv). In certain pullback constructions, see [18, Proposition 1.8].

The cases where Theorem 1.1 appears to be at work in full force seem to fall
under the following category:

When D ⊆ R is an extension of integral domains and R is an intersection of
overrings R� (i.e., R ⊆ R� ⊆ L) such that D ⊆ R� satisfies the hypothesis of
Corollary 3.5 for every �, i.e., (IR�)

−1 = I−1R� for every I ∈ f(D), where I−1 =
D :K I. This would happen when, for instance, every R� is a flat D-module. In
this case, we have R:LIR = (

∩
R�) :L IR =

∩
(R� :L IR�) =

∩
I−1R� = (I−1R)∗,

where ∗ is the star operation induced by {R�} on R ([1]). Indeed, as the v-operation
is coarser than any other star operation and the extreme left expression in these
equations is a v-ideal, we have the result. Consequently, if R is an overring of D
such that R is an intersection of flat overrings of D, then Theorem 1.1 applies to
the extension D ⊆ R.

The case D ⊆ R, where R is a generalized ring of fractions of D, is somewhat
peculiar. The generalized ring of fractions is defined as follows. Let S be a general-
ized multiplicative system, i.e., a multiplicative set generated by a nonempty set of
nonzero (integral) ideals of D. Then DS = {x ∈ K ∣ xI ⊆ D for some I ∈ S} is a
ring called the generalized ring of fractions with respect to S. There are two kinds
of ideal extensions from D to DS. Given an ideal J of D, we define JS = {x ∈ K ∣
xI ⊆ J for some I ∈ S}. It is well known that JDS ⊆ JS. For further details, the
reader may consult [7] and the references given there. For a more recent treatment
of the topic, see [20]. In [36, Lemme 1], Querré stated that if S is a generalized
multiplicative system and A and B are ideals of D, then (A :KB)S ⊆ AS :KBS and
if B is of finite type, then (A :K B)S = AS :K BS = AS :K BDS. This means that
(i) (B−1)S = (BS)−1 = (BDS)−1 for every finitely generated ideal B of D. Kang
[32, Lemma 3.4] extended this result to (ii) (BS)v = (BDS)v = (BvS)v = (BvDS)v
when B is finitely generated and (iii) (BDS)t = (BtDS)t for every B ∈ F (D), see
also [22]. We conclude that D ⊆ DS is t-compatible. Now under certain condi-
tions, DS is as an intersection of localizations of D and under these conditions, as
we have already seen, we have (B−1DS)v = (BDS)−1 for every B ∈ f(D). This
leads to the following question: Is it true that every extension D ⊆ R of integral
domains, where R is a generalized ring of fractions of D, satisfies the hypothesis
(8) of Theorem 1.1? The answer below shows that this happens if and only if S is
a localizing system, where a localizing system is a nonempty family ℱ of nonzero
integral ideals of D satisfying:

(LS1) If I ∈ ℱ and J ∈ I(D) with I ⊆ J , then J ∈ ℱ ;

(LS2) If I ∈ ℱ and J ∈ I(D) with (J :D iD) ∈ ℱ for every i ∈ I, then J ∈ ℱ .

A localizing system is a special kind of generalized multiplicative system of ideals.
If S is a multiplicative set of D, then ℱ = {I ∈ I(D) ∣ I ∩ S ∕= �} is a localizing
system such that Dℱ = DS . In particular, if S = D∖P , where P is a prime ideal
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of D, then ℱP = {I ∈ I(D) ∣ I ⊈ P} is a localizing system such that DℱP
= DP

and JℱP
= JP for every J ∈ F (D). More generally, if △ ⊆ Spec(D) (the set of

prime ideals of D), then ℱ(△) = ∩{ℱP ∣ P ∈ △} is a localizing system of D and
Dℱ(△) = ∩P∈△DP .

In our dealings with localizing systems, we shall need the following three easy
to establish facts: (1) Jℱ = Dℱ for an ideal J of D if and only if J ∈ ℱ ,
(2) (xI)ℱ = xIℱ for every 0 ∕= x ∈ K and for every ideal I of D, and (3) if E
is a D-submodule of Dℱ , then Eℱ ⊆ Dℱ (see [19, Section 2]).

We say that a localizing system ℱ is v-complete if for every family {Ik} of
divisorial ideals in ℱ such that

∩
Ik ∕= (0), we have

∩
Ik ∈ ℱ . There exist localizing

systems that are v-complete and there exist ones that are not; here is a simple
example to establish that.

Example 3.6. Let V be a valuation domain and P a nonzero idempotent prime
ideal of V . Then ℱP = {I ∈ I(V ) ∣ I ⊇ P} is a v-complete localizing system
(cf. [20, Proposition 5.1.12]). For an example of a localizing system that is not
v-complete, let x be a nonunit of V . Set Q =

∩
k≥1(x

kV ). Note that Q is a prime

ideal of V and Q ⊊ xkV for every integer k ≥ 1 (cf. [23, Theorem 17.1]). The
localizing system ℱQ = {I ∈ I(V ) ∣ I ⊋ Q} is not v-complete since the family
{xkV }∞k=1 is in ℱQ, but

∩
k≥1(x

kV ) = Q /∈ ℱQ.

The following theorem characterizes overrings of an integral domain that are
strongly t-compatible extensions.

Theorem 3.7. Let R be an overring of an integral domain D. Then the following
statements are equivalent.

(1) (IR)−1 = (I−1R)v for every I ∈ f(D).
(2) R = Dℱ for some localizing system ℱ of D.

Proof. (1) ⇒ (2) Let ℱ = {I ∈ I(D) ∣ (IR)v = R}. We first show that ℱ is a
localizing system. It is clear that I, J ∈ ℱ ⇒ IJ ∈ ℱ and that ℱ satisfies (LS1).
For (LS2), let I ∈ ℱ and J ∈ I(D) such that (J :D iD) ∈ ℱ for every i ∈ I.
Then i(J :D iD) ⊆ J , and thus i(J :D iD)R ⊆ JR. Since ((J :D iD)R)v = R, we
conclude that iR ⊆ (JR)v for every i ∈ I, and hence IR ⊆ (JR)v. Since I ∈ ℱ , we
have (IR)v = R, which forces (JR)v = R, and consequently J ∈ ℱ . Thus ℱ is a
localizing system.

We now show that R = Dℱ . Let x ∈ Dℱ ; then xI ⊆ D for some I ∈ ℱ . Thus
xIR ⊆ R, and hence x ∈ R since (IR)v = R. Thus Dℱ ⊆ R. For the reverse
inclusion, let x ∈ R. We have ((x−1D ∩D)R)v = ((1, x)−1R)v = ((1, x)R)−1 = R
by (1); so x−1D ∩ D ∈ ℱ . Since x(x−1D ∩ D) ⊆ D, we have x ∈ Dℱ . Therefore
R = Dℱ .

(2) ⇒ (1) Let ℱ be a localizing system of D such that R = Dℱ , and let
I ∈ f(D). Note that I−1R ⊆ (IR)−1 always holds, and thus (I−1R)v ⊆ (IR)−1.
Recall that (I−1R)v =

∩{yR ∣ y ∈ K and I−1R ⊆ yR}. So for the reverse
inclusion, we only need to show that (IR)−1 ⊆ yR for every y ∈ K such that
I−1R ⊆ yR. Let x ∈ (IR)−1. Since, according to Querré [36, Lemme 1], (IR)−1 =
(IDℱ )

−1 = (D : I)ℱ because I is finitely generated, we have x ∈ (D : I)ℱ , which
means xJ ⊆ D : I = I−1 for some J ∈ ℱ . This gives xJR ⊆ I−1R ⊆ yR for every
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yR ⊇ I−1R. Thus xJR ⊆ yR or xy−1JR ⊆ R, which gives xy−1J ⊆ R = Dℱ , and
hence (xy−1J)ℱ ⊆ Dℱ = R. Since (xy−1J)ℱ = xy−1Jℱ = xy−1Dℱ = xy−1R, we
have xy−1R ⊆ R, and thus xR ⊆ yR, which forces x ∈ yR for every y such that
yR ⊇ I−1R. Hence x ∈ (IR)−1 implies x ∈ ∩{yR ∣ y ∈ K and I−1R ⊆ yR} =
(I−1R)v, which establishes the reverse inclusion, and thus the equality. □

Corollary 3.8. Let ℱ be a localizing system of an integral domain D, and let
R = Dℱ . Then the following statements hold.

(1) IvD
R ⊆ (IR)vR

for every I ∈ f(D).
(2) (IR)vR

= (IvD
R)vR

for every I ∈ f(D).
(3) ItDR ⊆ (IR)tR for every I ∈ F (D).
(4) (IR)tR = (ItDR)tR for every I ∈ F (D).
(5) (IR)vR

= (ItDR)vR
for every I ∈ F (D).

(6) If I is an integral t-ideal of R, then I ∩D is a t-ideal of D.
(7) If I is a nonzero principal fractional ideal of R, then I ∩D is a t-ideal of

D.

Proof. By Theorem 3.7, R = Dℱ satisfies the hypothesis (8) of Theorem 1.1. Thus
statements (1)-(7) all hold. (For (6) and (7), note that I ∩D is nonzero when I is
nonzero since R is an overring of D.) □

Replacing I ∈ f(D) with I ∈ F (D) in Theorem 3.7, we have the following result.

Theorem 3.9. Let R be an overring of an integral domain D. Then the following
statements are equivalent.

(1) (IR)−1 = (I−1R)v for every I ∈ F (D).
(2) R = Dℱ for some v-complete localizing system ℱ of D.
(3) ((

∩
Ik)R)v = (

∩
(IkR))v =

∩
(IkR)v for every family {Ik} of fractional

divisorial ideals of D such that
∩
Ik ∕= (0).

Proof. (1)⇒ (3) By [30, Lemma 1.1], we have
∩
Ik = (

∑
I−1
k )−1. Thus ((

∩
Ik)R)v =

((D :
∑

I−1
k )R)v = R : (

∑
I−1
k )R = R :

∑
(I−1

k R)v = R :
∑

(IkR)−1 =
∩
(IkR)v. The

middle equality follows once we observe that ((
∩

Ik)R)v ⊆ (
∩
(IkR))v ⊆ ∩

(IkR)v.

(3) ⇒ (1) Let I ∈ I(D). We have R : IR =
∩
{i−1R ∣ 0 ∕= i ∈ I}. For every

0 ∕= i ∈ I, set Ii = i−1D. Consider the family of divisorial ideals {Ii}i∈I∖{0}. Note
that since 1 ∈ Ii for every i, we have

∩
Ii ∕= (0) and that

∩
Ii = D : I. Thus

R : IR =
∩
(IiR) = (

∩
(IiR))v = ((

∩
Ii)R)v = ((D : I)R)v.

(1) ⇒ (2) Let ℱ = {I ∈ I(D) ∣ (IR)v = R}. As in the proof of Theorem 3.7, ℱ
is a localizing system and R = Dℱ . We next show that ℱ is v-complete. Let {Ik}
be a family of divisorial ideals in ℱ such that

∩
Ik ∕= (0). By (1) ⇔ (3), we get

((
∩

Ik)R)v =
∩
(IkR)v = R. Hence

∩
Ik ∈ ℱ .

(2) ⇒ (1) Assume that R = Dℱ for some v-complete localizing system ℱ of D.
Let I ∈ I(D). We first show that (IDℱ )

−1 ⊆ (I−1)ℱ . Let x ∈ (IDℱ )
−1. Then

xI ⊆ Dℱ , which means that for every i ∈ I, there is a Ji ∈ ℱ such that xiJi ⊆ D.
Write x = ab−1 with a, b ∈ D and b ∕= 0, and set Hi = (Ji+ bD)v. Then {Hi}i∕=0 is
a family of divisorial ideals in ℱ such that

∩
i∕=0 Hi ∕= (0) and xiHi ⊆ D for every

i ∈ I∖{0}. Hence x(
∩

i∕=0 Hi) ⊆
∩

i∕=0 i
−1D = D : I. But

∩
i∕=0 Hi ∈ ℱ because ℱ is

v-complete. Thus x ∈ (I−1)ℱ , and hence (IDℱ )
−1 ⊆ (I−1)ℱ .
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We claim that (HDℱ )v = Dℱ for every H ∈ ℱ . Indeed, by the above result, we
have (HDℱ )

−1 ⊆ (H−1)ℱ . Moreover, according to [36], (H−1)ℱ = (D :H)ℱ ⊆ Dℱ :
Hℱ = Dℱ . Thus Dℱ ⊆ (HDℱ )

−1 ⊆ (H−1)ℱ ⊆ Dℱ , which implies (HDℱ )v = Dℱ .
Now let x ∈ (IDℱ )

−1. Since (IDℱ )
−1 ⊆ (I−1)ℱ , there is an H ∈ ℱ such that

xH ⊆ I−1, or xHDℱ ⊆ I−1Dℱ , or x(HDℱ )v ⊆ (I−1Dℱ )v. Hence x ∈ (I−1Dℱ )v,
and thus (IDℱ )

−1 ⊆ (I−1Dℱ )v. The reverse inclusion is obvious. □

The following example shows that there exist proper extensions of integral do-
mains that satisfy Theorem 3.7, but not Theorem 3.9.

Example 3.10. Let (V,M) be a rank-two valuation domain such that V has no
nonzero idempotent prime ideals (i.e., V has value group ℤ⊕Lℤ). For P the height-
one prime ideal of V , let R = VℱP

= VP . Then the extension V ⊆ R clearly satisfies
the equivalent conditions of Theorem 3.7. Let x ∈ M∖P . Then P =

∩
k≥1(x

kV ). As
we have seen in Example 3.6, the localizing system ℱP is not v-complete. Suppose
that there is a v-complete localizing system ℱ such that R = Vℱ . Then ℱ = ℱQ

for some prime ideal Q by [20, Proposition 5.1.12]. Necessarily Q = M . Thus
ℱ = ℱM ; so R = VM = V , which is impossible.

Remark 3.11. (1) An interesting particular case of Theorem 3.9 is when R = DP

for some prime ideal P of D. This case was studied in [17]. More precisely, we have
the following equivalences by [17, Lemma 2.1]:

(i) (IDP )
−1 = I−1DP for every I ∈ F (D).

(ii) ℱP is a v-complete localizing system.
(iii) For every family {I�} of integral divisorial ideals of D such that

∩
I� ∕= (0),∩

I� ⊆ P ⇒ I� ⊆ P for some �.
(iv) (

∩
I�)DP =

∩
(I�DP ) for every family {I�} of fractional divisorial ideals

of D such that
∩

I� ∕= (0).

(2) Besides Theorem 3.9, we have the following characterization of a v-complete
localizing system. Let ℱ be a localizing system of D; then the following statements
are equivalent.

(i) ℱ is a v-complete localizing system.
(ii) (

∩
I�)ℱ =

∩
(I�)ℱ for every nonempty family {I�} of divisorial fractional

ideals of D such that
∩
I� ∕= (0).

Note that this equivalence generalizes (ii) ⇔ (iv) of (1). For (i) ⇒ (ii), let
x ∈ ∩

(I�)ℱ . Then for each �, there exists a J� ∈ ℱ such that xJ� ⊆ I�. By
an argument similar to the one used in the proof of (2) ⇒ (1) of Theorem 3.9, we
can assume that {J�} is a family of divisorial ideals such that

∩
J� ∕= (0). Thus

x(
∩
J�) ⊆

∩
I� implies that x ∈ (

∩
I�)ℱ since ℱ is v-complete. Hence

∩
(I�)ℱ ⊆

(
∩
I�)ℱ . The other inclusion is clear. For the converse, let {I�} be a family of

divisorial ideals in ℱ such that
∩

I� ∕= (0). Then (
∩
I�)ℱ =

∩
(I�)ℱ = Dℱ . Hence∩

I� ∈ ℱ .

The next example shows that an integral domain D may have an overring R
which is a t-compatible (or v-compatible) extension of D that is not a generalized
ring of fractions of D.

Example 3.12. Let k ⊂ K be a proper extension of fields. Let V = K[[X]] =
K + M with M = XV , and let D = k + M . Let I ∈ F (D). By [9, Theorem
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4.3], one can easily check that Iv ⊆ (IV )v, that is, D ⊆ V is v-compatible, and
hence t-compatible. We next show that V is not a generalized ring of fractions of
D. Suppose that V = Dℱ for some generalized multiplicative system ℱ of D. Let
I ∈ ℱ ∖ {D}. Then I ⊆ M implies I2 ⊆ M2; so D :M2 ⊆ D : I2 ⊆ Dℱ = V . Thus
D : M2 = V . But D : M2 = D : X2V = X−2(D : V ) = X−2M ; so M = X2V , a
contradiction.

4. Integral domains whose overrings are t-compatible extensions

Following Richman’s characterization of Prüfer domains by means of their over-
rings [38], various conditions on the set of overrings of a given integral domain were
considered in order to study integral domains with “Prüfer-like” behavior.

Recall that a QR-domain (resp., QQR-domain) is an integral domain D such
that every overring of D is a ring of fractions (resp., an intersection of rings of
fractions) of D (cf. [24, 25]). By [38, Theorem 4], a QR-domain is a Prüfer domain,
but the converse is not true in general (cf. [14, 25]). On the other hand, since
flat overrings are intersection of localizations ([38]), it is obvious that a Prüfer
domain is a QQR-domain. The converse is not true since a QQR-domain is not
necessarily integrally closed ([24, Example 4.1]). However, the integral closure of a
QQR-domain is a Prüfer domain ([24]).

More generally, a GQR-domain (resp., ℱQR-domain) is an integral domain D
whose overrings are generalized rings of fractions with respect to multiplicative sets
of ideals (resp., localizing systems) of D (cf. [21, 27]). It is obvious that

QR-domain ⇒ QQR-domain ⇒ ℱQR-domain ⇒ GQR-domain.

Since a generalized quotient ring of an integrally closed domain is integrally
closed ([20, Lemma 5.1.14]), an integrally closed GQR-domain is a Prüfer domain.
W. Heinzer [27] conjectured that the integral closure of a GQR-domain is a Prüfer
domain. In [21], the authors proved this conjecture for ℱQR-domains.

In the following, we extend the above results to integral domains whose overrings
are all t-compatible extensions. An integral domain with this property will be called
a t-compatible domain. Also, we say that an integral domain is strongly t-compatible
if all of its overrings are strongly t-compatible extensions. So a strongly t-compatible
domain is t-compatible. Note that QR-domains are strongly t-compatible and
QQR, ℱQR, and GQR-domains are all t-compatible. By Theorem 3.7, strongly
t-compatible domains coincide with ℱQR-domains.

If D is a PVMD, the notion of t-compatible extension coincides with that of
strongly t-compatible extension.

Proposition 4.1. Let D ⊆ R be an extension of integral domains. If D is a
PVMD, then the following statements are equivalent.

(1) D ⊆ R is strongly t-compatible.
(2) D ⊆ R is t-compatible.
(3) D ⊆ R is t-linked.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.

(3) ⇒ (1) We need to show that (IR)−1 = (I−1R)v for every I ∈ f(D). Let
x ∈ (IR)−1. Then xIR ⊆ R implies xII−1R ⊆ I−1R. Since D is a PVMD, we
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have (II−1)t = D, and thus (II−1R)t = R by t-linkedness. Hence x ∈ (I−1R)t ⊆
(I−1R)v, and thus (IR)−1 ⊆ (I−1R)v. The other inclusion is clear; so (IR)−1 =
(I−1R)v. □

Note that from the previous sections, for an extension of integral domains the
following implications can not be reversed in general: strongly t-compatible ⇒
t-compatible ⇒ t-linked.

We next study the integrally closed t-compatible domains. Let f ∈ K[X]. We
denote by CD(f) the content of f , i.e., the fractional ideal of D generated by the
coefficients of f . We will need the following characterization of integrally closed
domains due to Querré [37]: an integral domain D is integrally closed if and only
if CD(fg)v = (CD(f)CD(g))v for every 0 ∕= f, g ∈ K[X].

Theorem 4.2. Let D ⊆ R be a t-compatible extension of integral domains with R
an overring of D. If D is integrally closed, then R is integrally closed.

Proof. We prove that if the above formula on the content of two polynomials is
satisfied for D, then it is also satisfied for R. Let 0 ∕= f, g ∈ K[X]. We have
CR(f) = CD(f)R and CR(g) = CD(g)R. By t-compatibility, we have CD(fg)v ⊆
(CD(fg)R)v = CR(fg)v. Since CD(fg)v = (CD(f)CD(g))v by assumption, it fol-
lows that CD(f)CD(g) ⊆ CR(fg)v. Thus CR(f)CR(g) ⊆ CR(fg)v, and hence
(CR(f)CR(g))v ⊆ CR(fg)v. The reverse inclusion is clear; so we have CR(fg)v =
(CR(f)CR(g))v. □

Corollary 4.3. Let D be an integrally closed domain. Then the following state-
ments are equivalent.

(1) D is a Prüfer domain.
(2) (IR)−1 = I−1R for every overring R of D and I ∈ f(D).
(3) D is a strongly t-compatible domain.
(4) D is a t-compatible domain.
(5) D is a QQR-domain.
(6) D is a ℱQR-domain.
(7) D is a GQR-domain.

Proof. The fact that statements (5)-(7) are equivalent to D being a Prüfer domain
is well known, as it was mentioned above. Since every overring of a Prüfer domain
is flat, we have (1)⇒(2); (2) ⇒ (3) is clear; and (3) ⇒ (4) follows from Theorem 1.1.
Finally, (4) ⇒ (1) follows from Theorem 4.2 and [14]. □

Remark 4.4. Since strongly t-compatible domains coincide with ℱQR-domains
by [21], the integral closure of a strongly t-compatible domain is a Prüfer domain.
We can ask the same question about t-compatible domains, but this question is still
open in the case of GQR-domains ([27]).

Analogously, we say that an integral domain D is v-compatible if every overring
of D is a v-compatible extension. A v-compatible domain is t-compatible. The
converse is not true since a Prüfer domain is t-compatible, but not v-compatible in
general (see below).

Corollary 4.5. An integrally closed v-compatible domain is a Prüfer domain.
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The following example shows that a Prüfer domain need not be v-compatible.

Example 4.6. ([28, Example 2.6]) Let D be a two-dimensional Prüfer domain with
maximal ideals M1, M2 and P the height-one prime ideal contained in M1 ∩ M2

with the assumption that DP is a DVR. Recall that P is a divisorial ideal and
P−1 = (P : P ) = DP , see [31]. Let I = PDM1

∩ xDM2
, where PDP = xDP for

some x ∈ P . By [28, Example 2.6], we have I−1 = P−1 = DP and (I : I) ⊊ DP .
In particular, Iv = Pv = P . Assume that Iv ⊆ (IDM2

)v. But IDM2
= xDM2

; so
P = Iv ⊆ (IDM2

)v = xDM2
. Thus P ⊆ I; so I = P , which is impossible since

(I : I) ⊊ (P : P ). Hence the extension D ⊆ DM2
is not v-compatible.

Remark 4.7. As we have seen above, a Prüfer domain need not be v-compatible.
What about valuation domains? In this case, the answer is positive. Indeed, let
V be a valuation domain and W be a proper overring of V . Then W = VP for
some non-maximal prime ideal P of V . Let I ∈ F (V ) and x ∈ (IVP )

−1. Then
xI ⊆ VP implies xIP ⊆ PVP = P . Taking the v-closure, we get xIvPv ⊆ Pv.
Thus xIv ⊆ Pv : Pv = P−1 = VP (cf. [31]), and hence x ∈ (IvVP )

−1. Thus
(IvW )v ⊆ (IW )v, and hence (IvW )v = (IW )v. Therefore V ⊆ W is v-compatible.
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[38] F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16(1965) 794–799.
[39] A. Rykaert, Sur le groupe des classes et le groupe local des classes d’un anneau intègre, Ph.D

Thesis, Universite Claude Bernard de Lyon I, 1986.

[40] M. Zafrullah, Finite conductor domains, Manuscripta Math. 24(1978) 191–203.
[41] M. Zafrullah, Well behaved prime t-ideals, J. Pure Appl. Algebra 65(1990) 199–207.
[42] M. Zafrullah, Putting t-invertibility to use, in: Non-Noetherian Commutative Ring Theory

(S. Chapman and S. Glaz, Eds.) Math. Appl. 520, Kluwer Acad. Publ., Dordrecht, 2000, pp.

429–457.

16


