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Abstract

Anderson, D.D., E.G. Houston and M. Zafrullah, t-linked extensions, the t-class group, and
Nagata’s theorem, Journal of Pure and Applied Algebra 86 (1993) 109-124.

Let A be a subring of the integral domain B. Then B is said to be t-linked over A if for each
finitely generated ideal I of A with I”' = A, we have (IB) ' = B. If A and B are Krull domains,
this condition is equivalent to PDE. We show that if B is t-linked over A, then the map
I— (IB), gives a homomorphism from the group of t-invertible t-ideals of A to the group of
t-invertible t-ideals of B and hence a homomorphism Cl,(A)— Cl(B) of the t-class groups.
Conditions are given for these maps to be surjective which extend Nagata’s Theorem for Krull
domains to a much larger class of domains including, e.g., Noetherian domains each of whose
grade-one prime ideals has height one.

Introduction

Let A be a Krull domain. Then the set of divisorial ideals of A is a (free
abelian) group D(A) under the v-product. If AC B is an extension of Krull
domains which satisfies PDE (ht(Q N A) = 1 for each height-one prime ideal Q in
B), then there is a natural homomorphism D(A)— D(B) which induces a
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homomorphism CI(A)— CI(B) of the divisor class groups. Examples of such
extensions satisfying PDE are flat extensions, integral extensions, and subintersec-
tions. While in general the induced homomorphism Cl(A4)— CI(B) is neither
injective nor surjective, Nagata’s Theorem states that if B=(),_, A, is a
subintersection of A, then the map CI(A)— CI(B) is surjective and the kernel is
generated by the classes of the height-one prime ideals of A which are not in T.

Because the class group is defined only for completely integrally closed
domains, its use has been limited mostly to results about Krull domains. The
purpose of this paper is to utilize the recently introduced concepts of t-class group
and t-linked extensions to extend these results as much as possible to general
integral domains. It is hoped that the techniques introduced in this process will
also deepen our understanding of Krull domains and their extensions which satisfy
PDE.

In Section 1 we briefly describe the terms we shall use. The second section is
then concerned with t-linked extensions. An integral domain B is said to be
t-linked over a subring A (or the extension A C B is t-linked) if for each finitely
generated ideal I of A with I”'= A, we have (IB)™' = B. Several conditions
equivalent to B being t-linked over A are given in Proposition 2.1. For Krull
domains A C B, the notions of PDE and t-linkedness coincide. What is critical for
the rest of the paper is the observation (Theorem 2.2) that if A C B is t-linked,
then the map 0 : TI(A)— TI(B) from the group of t-invertible t-ideals of A to
that of B, given by 6(/) = (IB),, is a homomorphism which induces a homo-
morphism 6 : C1,(A)— Cl,(B) of the t-class groups.

In the third section, we investigate three different natural maps D(A)— D(B),
where A C B are Krull domains. We show in Theorem 3.1 that a Noetherian Krull
domain A is locally factorial if and only if the map 6 : D(A)— D(B), given by
6(1)=(IB),, is a homomorphism for each Krull domain B D A.

In the final section we give three results related to Nagata’s Theorem. We show
(Theorem 4.5) that if A is a domain in which every prime t-ideal has height one
(which is the case for Krull domains), then the homomorphisms TI(A)-— TI(B)
and Cl,(A)— Cl,(B) are surjective whenever B = A, S a multiplicatively closed
subset of A. We also prove the surjectivity of these maps when A4 is a PVMD and
B is a subintersection. The main result of this section, Theorem 4.8, is an analog
of Nagata’s Theorem for weakly Krull domains. Here A is said to be weakly Krull
if A=1,_ x(hay Ap is a finite character intersection of localizations at height-
one primes. We show that if B =) ocrAp (TC X‘D(A)) is a subintersection of
A, then the natural homomorphism CI,(A)— CI (B) is surjective with kernel
generated by the classes of the t-invertible t-ideals primary to primes in
XD(ANT. We also show that, unlike Krull domains, weakly Krull domains do
not in general behave well under polynomial extensions but that a domain A
which is simultaneously a weakly Krull domain and a Prifer v-multiplication
domain (a so-called generalized Krull domain) does have the property that A[X]
is again a weakly Krull Prifer v-multiplication domain with t-class group equal to
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that of A (as is the case for Krull domains). Included also is a characterization of
those weakly Krull domains A for which A[X] is again weakly Krull.

1. Preliminaries

Let A be an integral domain with quotient field K. Recall that for a nonzero
fractional ideal J of A, I, =(I ") ' =[A:[A:1]]={xA|xADI,xE€EK}. An
ideal 7 is said to be a v-ideal, divisorial, or reflexive if I = I,. (Here, of course, by
‘ideal’ we mean ‘fractional ideal’. For the rest of the paper, the context will make
clear which meaning should be assigned to the word ‘ideal’.) The set D(A) of
v-ideals is a monoid over the v-product I* J = (1J),. Of course, D(A) is a group if
and only if A is completely integrally closed. For properties of the v-operation,
the reader is referred to [19, Section 34].

However, we will be mostly interested in the t-operation 1->1,, where I, =
U {J, | J is a nonzero finitely generated subideal of I}. (For properties of the
t-operation, the reader may consult [2], [5], or [22].) An ideal [ is called a t-ideal
if I=1. A t-ideal (respectively, v-ideal) I has finite type if I=(a,,...,a,),
(respectively, I={(a,, ..., a,),) for some finite subset {a,, ..., a,} of I. While
the set of v-ideals may be a proper subset of the set of t-ideals, the sets of finite
type t-ideals and finite type v-ideals coincide. An ideal 7 is said to be t-invertible if
there is an ideal J with (IJ), = A. If I is t-invertible, we may take J=1"" A
t-invertible t-ideal necessarily has finite type; in fact, an ideal is t-invertible if and
only if /, has finite type and IA , is principal for each maximal t-ideal P of A [23,
Proposition 2.6]. The set TI(A) of t-invertible t-ideals of A is a group under the
t-product I J = (1J),, and the set P(A) of nonzero principal fractional ideals of A
under multiplication is a subgroup of TI(A). The quotient group Cl,(A) = TI(A)/
P(A) is called the t-class group of A; unlike the divisor class group, the t-class
group is defined for arbitrary integral domains. When A is a Krull domain, the t-
and the v-operations coincide, D(A)=TI(A), and Cl,(A4)= CI(A), the usual
divisor class group of A. For properties of the t-class group, the reader is referred
to [2, 3, 5, 8, 10, 11].

Our general reference for Krull domains and the divisor class group is [16]. For
an integral domain A, X"/(A4) will denote the set of height-one prime ideals of A.
Recall that for a Krull domain A, D(A) is a free abelian group. An extension
A C B of Krull domains is said to satisfy PDE ( pas d’éclatement) if for each
0 € X(B), we have ht(Q N A) = 1. The abbreviation NBU (for no blowing up)
is sometimes used instead of PDE. Since in a Krull domain, a prime ideal is
divisorial if and only if it has height one, the PDE condition can be restated in the
following way: if Q is a prime t-ideal of B with Q N A #0, then (Q N A), # A.

Recall that a subintersection of a domain A is an overring B of the form
B=1(,_; A, for some T CSpec(A). By [12, Proposition 4], T can always be
restricted to a subset of the set of associated primes of A. In particular, T can be
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assumed to be a subset of the set of t-prime ideals of A, and, if A happens to be a
Krull domain, we can further assume that T C X‘"(A). The statements of many
of our results place such restrictions on 7', but all subintersections considered are
in fact arbitrary.

2. t-linked extensions

Let A be a subring of the integral domain B. Following [14], we say that B is
t-linked over A if for each finitely generated fractional ideal  of A with I ' = A,
we have (IB)™' = B. We list in Proposition 2.1 several conditions equivalent to B
being t-linked over A. Note in particular that condition (3) shows that an
extension of Krull domains A C B is t-linked if and only if it satisfies PDE.

Proposition 2.1. Let A be a subring of the integral domain B. Then the following
statements are equivalent.

(1) B is t-linked over A.

(2) If I is a (finitely generated) ideal of A with I, = A, then (IB), = B.

(3) If Q is a prime t-ideal of B with Q N A #0, then (Q N A), # A.

(4) If Q is a maximal t-ideal of B with Q N A#0, then (Q N A),# A.

(5) If I and J are t-invertible ideals of A with I, = J,, then (IB), = (JB),.

(6) If I is a t-invertible ideal of A, then (IB), = (I,B),.

Proof. The proof of [14, Proposition 2.1] shows that (1)—(3) are equivalent. (The
parenthetical ‘finitely generated’ in statement (2) can be omitted, since for an
ideal / with I, = A it follows that 7, has finite type.) That (3) = (4) is clear and the
converse follows from the fact that a prime t-ideal is contained in a maximal
t-ideal. It is also easy to see that (5)=(6)= (2). It remains only to show that
(2)=(5). Assume (2). The equality 7, = J, yields (IJ '), = A, which implies that
(I77'B), = B. Hence (IB), = (IB(JJ"'B),),=(JB(IJ 'B),),=(JB),. O

Theorem 2.2. Let AC B be a pair of integral domains with B t-linked over A.
Then the map 6 :TUA)— TI(B), given by 6(I)= (IB),, is a homomorphism.
Furthermore, if xA is a principal fractional ideal of A, then 0(xA) = xB; thus 0
induces a homomorphism 6 : Cl,(A)— Cl,(B), where 6([I]) =[(IB),].

Proof. We neced only show that € is a homomorphism. We have 0(/*J)=
((17),B),. By Proposition 2.1(6), (({J)B),=1JB),=((IB)(JB),), =
6()=0(J). O

It should be noted that the homomorphism 6 in Theorem 2.2 can exist without
A C B being t-linked. Indeed, let A be any domain with Cl,(A) =0, and let B be
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any overring. Then for any r-invertible t-ideal I of A, we have that I is a principal
ideal xA of A, whence 6(1) = xB € TI(B), and both the map 6 and the induced
map 6 are easily seen to be homomorphisms. For a specific example for which B is
not t-linked over A, let A = K[X, Y], where K is a field and X,Y are indetermi-
nates over K, and let B be a valuation overring of A with maximal ideal M
centered on (X, Y). Then M is a t-ideal of B with MN A= (X, Y)#0, but
(X, Y), = A. Thus A C B is not t-linked. Examples of this type where both A and
B are Krull domains will be discussed in the next section.

We next consider some examples of t-linked extensions. The following result,
stated for the case of overrings in [14], gives several such examples.

Proposition 2.3. Let A be an integral domain. Then:
(1) Any directed union of t-linked extensions of A is t-linked over A.
(2) Any intersection of t-linked extensions of A is t-linked over A.
(3) Any flat extension of A is t-linked over A.
(4) Any generalized transform of A is t-linked over A.
(5) The complete integral closure of A in its quotient field is t-linked over A.

Proof. The proofs of (1)-(4) are given in [14, Proposition 2.2] for the case of
overrings; these proofs easily extend to the general case (as is remarked in [14,
Remark 2.5]). Statement (5) is proved in [14, Corollary 2.3]. O

It is well known that an extension A C B of Krull domains satisfies PDE (is
t-linked) if either (i) ACB is flat, (ii)) ACB is integral, or (iii) B is a
subintersection of A. Proposition 2.3 shows that any flat extension of integral
domains is t-linked. Also, since an intersection of t-linked overrings is t-linked,
Acn A, is t-linked for any collection {Q,} of prime ideals of A; thus a
domain is t-linked in any subintersection. The question of when an integral
extension A C B is t-linked is more delicate. If A4 is Noetherian and B is the
integral closure of A in its quotient field, then A C B is t-linked since in this case
B is also the complete integral closure of A. (See [14, Corollary 2.14] for an
extension of this to the case of quasicoherent A.) However, in general the integral
closure of A in its quotient field need not be t-linked over A (see [15] for an
example). We end this section by showing that a root-closed root extension is
always t-linked.

Proposition 2.4. Let AC B be a root extension of integral domains (that is, for
each b € B, b" € A for some positive integer n). Suppose further that B is root
closed in its quotient field. Then the extension A C B is t-linked.

Proof. Let I=(a,,...,a,) be an ideal of A with I™' = A. We shall show that
(IB)™' = B. Suppose that xIB C B for some element x in the quotient field of B.
There is a positive integer n such that x"(a}, . . ., a}) C A; it follows that x" lies in
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the quotient field of A, and since (a}, ..., a}) ' = A, we have x" € A C B. Since
B is root closed, this gives x € B, as desired. [

3. The case of Krull domains

In this section we consider maps from TI(A) to TI(B), where A C B are Krull
domains. For A a Krull domain, the t-operation and the v-operation are the same,
so that TI(A)= D(A), the group of fractional divisorial ideals under the v-
product I+ J = (1J),. Then D(A) is a free abelian group on XM (A). Let P(A) be
the subgroup of D(A) consisting of principal fractional ideals. Then the t-class
group Cl,(A) =TI(A)/P(A) = D(A)/P(A) = CI(A), the usual divisor class group.

Suppose that A C B is an extension of Krull domains. We wish to define a
‘natural’ homomorphism ¢ : D(A)— D(B) with ¢(P(A4)) C P(B) so that ¢ in-
duces a homomorphism ¢ : CI(A)— CI(B). There are at least three natural ways
to attempt to define such a map. We first consider the map given in the preceding
section.

Define 6, : D(A)— D(B) by 6,(I) = (IB),. Note that for x in the quotient field
of A, 6,(xA)= (xAB), = xB, so that 6,(P(A)) C P(B) and 6, takes the identity of
D(A) to the identity of D(B). As was noted in the preceding section, 6, is a
homomorphism if A C B satisfies PDE (is t-linked). However, 6, need not in
general be a homomorphism as is seen by Theorem 3.1. Note that the condition
that 6, is a homomorphism translates to ((I7),B), = (I/B), for all 1,J € D(A). It
follows that 6, is a homomorphism if and only if

6,(P{") NN POy = (PP N+ PO)B), = (P} -+ PIB),
for P,€ X'(A). Note that if A is locally factorial, then D(A) = I(A), the group
of invertible ideals of A with the usual ideal product (see [1, Theorem 1]). In this
case, 6, : D(A) = I(A)— I(B) C D(B) is a homomorphism. For Noetherian Krull
domains, the converse is true.

Theorem 3.1. For a Noetherian Krull domain A, the following statements are
equivalent.

(1) A is locally factorial.

(2) For each Krull domain B containing A as a subring, the map
6, : D(A)— D(B) is a homomorphism.

(3) For each overring B of A which is a DVR, the map 6, : D(A)— D(B) is a
homomorphism.

Proof. We have already observed that (1) = (2), and it is clear that (2) = (3). To
prove that (3)=>(1), assume that A is not locally factorial. Then there is a
noninvertible height-one prime P in A [1, Theorem 1}. Let x be a nonzero
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element of P, and write xA = P’ N --- N P where P, =P, P,, ..., P, are the
height-one primes of A which contain xA. Note that we must have x4 = P{" N
N PU) o Pl P lest P=P, be a factor of xA and hence be invertible.
Thus Pjt--- PP =C(xA)= C(P"’ Nn---NP")), where C=P"---P':xA#
A. Let M be a maximal ideal containing C. By a result of Chevalley [13], there is
a DVR-overring (B, (7)) of A with #/BN A= M. Now if 0, : D(A)— D(B) is a
homomorphism, then

xB = Gl(xA) = HI(PE"‘) N---N Pf_”;))

Hence CB= B, and B= CB C MB C 7wB, a contradiction. []

We have seen that 6, : D(A)— D(B) is a homomorphism if and only if
0,(PU" NN P"))= (P - - P™B), for each finite subset {P;} of X((A). We
take this as our definition of the second map 6, : D(A)— D(B). Since D(A) is a
free abelian group on X‘"(A), the set function 6, : X'"(A4)— D(B), given by
6,(P) = (PB), extends to a unique homomorphism 6, : D(A)— D(B). Note that
since 6, is a homomorphism, 6,(P"’ N ---N Py = (P71 --- P™B),. Thus we see
that 6, is a homomorphism if and only if 8, = 6,. Hence if A C B satisfies PDE,
then 6, = 6,.

Note that if 8, = 6,, then 6,(xA) = 6,(xA) = xB for each x in the quotient field
of A, and so 6,(P(A))C P(B). However, we may have 6,(xA)=xB for all
nonzero elements of the quotient ficld of A without A C B satisfying PDE. For
example, take A = K[X, Y], where K is a ficld and X,Y are indeterminates, and
let B be a DVR centered on (X, Y). Then 6, =6,, since A is factorial, but
certainly A C B does not satisfy PDE. Also, note that we can have 6,(P(A)) C
P(B) without having 6,(xA) = xB or 6, = 6,. For example, if B is factorial, then
P(B)= D(B), and thus we certainly have 6,(P(A))C P(B). However, as the
proof of Theorem 3.1 shows, even when B is a DVR, we may have 6,(xA) # xB
and 6, # 0,.

The third (and customary) way to define a function D(A4)— D(B) was given by
Samuel [24] and Fossum [16]. We define this map in ideal-theoretic terms. As in
the definition of 6,, we define a function 6, : X‘"’(A)— D(B) which then extends
to a unique homomorphism 6, : D(A)—> D(B). Suppose that P € XV(A). If
(PB), = B, then define 60,(P)=B. If (PB),# B, then (PB),=Q’N---N
0" N NN Q") where each Q, € X"(B) and where Q, N A 2 P for
i=1,...,rand Q,NA=Pfori=r+1,...,s Define ,(P)=Q":’N---nN
Q" (and 6,(P)= B if r = 5).

Note that 6, = 6, if and only if A C B satisfies PDE. Hence if 6, = 6,, then 6, is a
homomorphism, and so 6, =6, =6, and AC B satisfies PDE. Thus if ACB
satisfies PDE, then 6,(xA)= xB for each x in the quotient field of 4, so that
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6,(P(A)) C P(B). However, the map 6, may satisfy 6,(P(A))C P(B) without
having 6, = 6;. For example, in the example discussed above, where A = K[ X, Y]
and B is a DVR centered on (X, Y), 6; maps every element of D(A) to B while 6,
maps no element of X‘(A) contained in (X, Y) to B. Thus, contrary to [16,
Theorem 6.2], 6;(P(A)) C P(B) does not imply that A C B satisfies PDE. (Fos-
sum has misquoted [24, Theorem 6.1], which, stated in ideal-theoretic terms, says
that A C B satisfies PDE if and only if ;(xA) = xB for all x in the quotient field of
A.) Our next theorem summarizes the relationship between the maps 6,, 6,, and
6; and A C B satisfying PDE. The relationship between 6, and 6, has also been
considered by D.F. Anderson [7, Section 5]. However, he has communicated to
us that his example with (his) ¢ not a homomorphism is incorrect. He has
suggested the following example of a pair of Krull domains not satisfying PDE but
for which 6,(P(A)) C P(B). Take A = K[X, XY] and B = K[X, Y]. Then XB N
A = (X, XY) has height two in A but 6,(P(A)) C P(B) since B is factorial.

Theorem 3.2. For a pair AC B of Krull domains, the following conditions are
equivalent.
(1) AC B satisfies PDE; i.e., Q € X'V(B) implies ht(Q N A)=1.
(2) For an ideal I of A, I, = A implies (IB), = B; i.e., B is t-linked over A.
(3) For (fractional) ideals I and J of A, I,=J, implies (IB), = (JB),.
(4) For a (fractional) ideal I of A, (IB),= (I,B),.

(5) 6,=6,.
(6) 6,=6,.
(7) 6,=0,=6,.

(8) 6,(xA) =xB for each nonzero element x € A.

Proof. The equivalence of statements (1)—(4) follows from Proposition 2.1. We
have already observed that (1)< (6). Certainly (5)<(7) since 6, = 6, if and only
if 6, is a homomorphism. That (7)=>(6) is clear; and if (6) holds, then from
(6) = (1) we get that 6, = 6,, and so (7) holds. Certainly, (5)=>(8). Assume that
(8) holds. Let 0 € X'"(B) with QN A#0. Let 0#x € Q N A. Since 6,(xA) =
xB, we must have that O contracts to a prime minimal over xA, and so
ht(Q N A) = 1. Thus (8)=> (1), and the proof is complete. O

4. Extensions of Nagata’s Theorem and weakly Krull domains

The purpose of this section is to give several extensions of Nagata’s Theorem
and to study polynomial extensions of weakly Krull domains. We begin by stating
Nagata’s Theorem and two of its important corollaries. For proofs and the history
of these results, the reader is referred to [16, Section 7].

Theorem 4.1. (Nagata’s Theorem) Let A be a Krull domain and suppose that
B=\,.; A, is a subintersection of A (where it may be assumed that T C
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XV(A)). Then the homomorphism 9 : CI(A)— CI(B), given by o([11)=[(IB),] is
surjective and ker 0 is generated by the classes of those height-one primes of A not
in T. [

Corollary 4.2. Let S be a multiplicatively closed subset of the Krull domain A.
Then the homomorphism 0 : CI(A)— CI( A ) is surjective and ker 0 is generated by
the classes of height-one primes of A that meet S. [

Corollary 4.3. Let S be a multiplicatively closed subset of the Krull domain A. If S
is generated by principal primes, then the homomorphism 6 : CI(A)— Cl(Ay) is an
isomorphism. [

Now let 4 be an integral domain, not necessarily a Krull domain, and let
B =1, A, be a subintersection of A. Then A C B is a t-linked extension, and
so we have by Theorem 2.2 a homomorphism 6:TI(A)— TI(B) given by
6(I) = (IB),. Since for x in the quotient field of A, 6(xA) = xB, 6 induces a
homomorphism 6 : Cl,(A)— Cl,(B) with 6([/]) = [(IB),]. Two natural questions
have received wide attention. The first simply asks whether 6 is surjective. The
second question asks, in the case where B = A, S a multiplicatively closed subset
of A generated by principal primes, whether 6 is an isomorphism? In [2, Theorem
2.3] it was shown that 6 is injective when S is generated by principal primes, but
an example was given of a domain D and an element f € D for which
Cl(D)— Cl(D;) is not surjective. In [18] Gabelli and Roitman studied condi-
tions under which 8 is surjective; they showed that 6 is surjective (and hence an
isomorphism) when S is generated by (what is called in [3]) a splitting set of
principal primes (that is, a set {p,} of nonassociate principal primes with

net1 PaA=0 for each & and M}_, Po,A =0 for each countably infinite subset
{Pa,} of {p,}). They also gave an example in which S was generated by principal
primes, but for which ¢ was not surjective. Their result was proved independently
in [3] using entirely different techniques. The reader is referred to [3] for further
discussion of these questions. We remark that D.F. Anderson and A. Ryckaert
[9] have shown that for any two abelian groups G and H, there is an integral
domain A and a multiplicatively closed subset S of A4 with Cl,(A)= G and
Cl(Ag)=H.

Our first result extends Theorem 4.1 to Prufer v-multiplication domains
(PVMD’s). Recall that a PVMD is an integral domain in which every ﬁnitely“
generated ideal is t-invertible. Equivalently, a domain A is a PVMD if A, is a
valuation domain for each prime t-ideal P of A. In particular, Krull domains are
PVMD’s.

Theorem 4.4. Let A be a PVMD, and let B= () ,_, A, be a subintersection of A,
where T is a subset of the set of t-primes of A. Then the map 0 : TI(A)— TI(B),
given by 6(I)=(IB), is a surjective homomorphism. The induced map
6 : Cl(A)— Cl,(B) is also a surjective homomorphism.
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Proof. It suffices to show that 0 is surjective. Let J=(x,,...,x,), be a t
invertible t-ideal of B; we may assume that J is an integral ideal of B. Set
I=A:x;N---NA:x, (Here, A:x={a€ A|ax € A}.) Then [ is a finite-type
t-ideal of A. We claim that (IB), = B. To verify this, suppose that u is an element
of the quotient field of A for which ul C B. Then for each P& T, we have
ul C A,. However, IZP, since each x,€ A,. Hence u&€( ) A,=B. Thus
(IB),=B. Now I=C, for some finitely generated ideal C of A, and by
Proposition 2.1, (1) (6), (C,B),=(CB),. Thus (IB),= B (since (CB), = B,
and CB is a finitely generated subideal of IB). Put I, = Ix, + - - - + Ix, . Since (1),
has finite type and A is a PVMD, (l,), is t-invertible. We shall show that
0((1,))=J. Note that (I,),=(Cyx,+ -+ Cyx,),=(Cx,+---+Cx,)), =
(Cx,+--++ Cx,),. Hence, again applying Proposition 2.1, we have ((,),B), =
((Cx;+ -+ Cx,)B), C(1J), = (IB),J),= J. On the other hand,

((1)B), = ((Ix, + -+ Ix,),B) 2 ((x; + - + Ix,) B),
=UB(xy, ..., x,)) = (UB) (%, ..., x,)) =T,

and the proof is complete. [

One of the important properties of Krull domains is that their divisorial primes
have height one. The t-ideal analog is the requirement that each prime t-ideal
(equivalently, each maximal t-ideal) have height one. A domain A with this
property is said to have t-dimension 1 (written t-dim(A) = 1). The second main
result of this section is that if t-dim(A) =1, then 6 : Cl,(A)— Cl (A4y) is indeed
surjective. This result is a generalization of (and our proof borrows heavily from
that of) [18, Theorem 1.18].

Theorem 4.5. Let A be an integral domain with t-dim(A)=1 (so that every
maximal t-ideal of A has height one), and let S be a multiplicatively closed subset of
A. Then the map 6 :TI(A)—TI(Ay), given by 0(I)=(1Ay),, is a surjective
homomorphism. Hence the induced map 0 : Cl,(A)— Cl(Ay) is also a surjective
homomorphism.

Proof. Again, it suffices to show that 6 is surjective. Let J be a t-invertible t-ideal
of Ag. ThenJ = (IAy), for some finitely generated ideal of A. If (II"'),N S =9,
then (I1™'), can be expanded to a prime ideal P maximal with respect to avoiding
S and being a t-ideal. By hypothesis, ht(P) =1, whence PA; is a height-one
prime, and therefore a prime t-ideal, of A . However, (JJ7'), =
((IA ) (HAS) ), = (AT 'A), = (IT"'Ag), C PA, a contradiction. Hence there
is an element s€ (/I"") NS. Put [, =IA, N A. (Here A, = {& |a€E Aandnisa
nonnegative integer}.) Then, since s is not a zero-divisor mod /;, the ideal (1, s)
lies in no height-one prime of A. Thus, since t-dim(A)=1, (f,,s),= A. Let
I, =1+ I}, where I{ is a finitely generated ideal of A with 1] C [, and (I}, 5), = A.
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Clearly, I,A;=1IA,. Since I, is finitely generated, we have that ((1,)Ag), =
(LAY, =({As), = J; we shall complete the proof by showing that I, is t-
invertible. Since s € (II?I)I; there are elements a,,...,a, €Elandu,,...,u, €
I with s€((a,,...,a,)u,,...,u,)),. Let x€I,CI,=IA;N A. Then for
some positive integer k, s*x €1 and s“xu, € A for each i. Thus s*u,I| C A for
sufficiently large k. Since s*u,/ C A also, we have s*u, € I,'. Thus

sres(ay, - a0 uy),

= (@, @) U 5 U,)) S ),
Hence (L1,"), 2 (I,, s, 2}, s*""), = A, and I, is t-invertible. O

Remark. We do not know whether the analogue of Theorem 4.5 can be proved
for subintersections.

Example 4.6. We give an example of a Noetherian domain A for which the map
Cl,(A)— CI,(B) is surjective for each subintersection B of A but for which the
t-dimension of A is greater than 1. Let R be a Noetherian UFD with exactly n
maximal ideals Ny, ..., N, such that each R/N;, is isomorphic to a fixed field K.
For each i let ¢, be a surjective homomorphism from R to K with kernel N,. Set
A={r€R]|e(r)=¢lr) for all i,j}. By [25, Theorem, p. 585], A is a local
Noetherian domain with maximal ideal M = N, N --- N N, such that M is the
conductor of A in R and such that R is the integral closure of A. Thus M is
divisorial (and therefore a t-ideal) in A and ht(M) = max{ht(¥,)}. Now we can
arrange to have the N, of equal height greater than one, so that we can assume
that t-dim(A) = 2. For each prime P of A for which P # M, we have A, = R, so
that any subintersection B of A which properly contains A is actually a subinter-
section of R. Thus Cl,(B) =0, and Cl,(A)— Cl,(B) is surjective, for each such
B. O

An integral domain A is said to be weakly Krull if A = mPEx(l)(A) A, where
the intersection has finite character. Weakly Krull domains (although not called
that there) were introduced in [5]. Weakly Krull domains share many properties
with Krull domains. For example, in a weakly Krull domain A, X"(A) is the set
of prime t-ideals, that is, t-dim A =1 [5, Lemma 2.1]. It follows from [5, Theorem
3.1] that a domain A is weakly Krull if and only if every t-invertible t-ideal is a
t-product of primary t-ideals. Moreover, if [ is a t-invertible t-ideal of a weakly
Krull domain A, then I=Q, N---NQ, =(Q, - Q,),, where Q,= IA, NA
with {P,,..., P,} the set of height-one primes containing / and each Q,; a
P,-primary t-invertible t-ideal.

Let A be weakly Krull. Then every subintersection B of A has the form
B=MN oer A, for some subset T of X (A). Note that by Proposition 2.3, B is
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t-linked over A. Thus if [ is a t-invertible t-ideal of A, then IB is a t-invertible
ideal of B and by Theorem 2.2 the map 6 : TI(A)— TI(B), given by 6(/) = (IB),,
is a homomorphism. We show that B is weakly Krull.

Proposition 4.7. Let A be weakly Krull and let B = () ocr Ap be a subintersection
(where T is a nonempty subset of X"(A)). Then B is also weakly Krull.
Moreover, X'"(B)={BNQB,| Q€ T} and for 0 € X'""(B), By = Ay, -

Proof. Let P be a prime t-ideal of B. Since PN A0, (PN A),# A (because B
is t-linked over A). Hence ht(P N A) =1, since A is weakly Krull. Now A4, , C
B,=(N oerAo)p= N ocr (Ap)pp, since the intersection has finite character.
Each (A )p.p is either A, or the quotient field of A. Thus A, C B, C A, for
some Q& T. But then Q=PNA, A,,,=B,, and ht(P)=1. If Q€ T, then
QO'=BnN QA is a prime ideal of Band A,C B, C A,, andso B, = A, and
ht(Q)y=1. O

We are now prepared to prove the main resuit of this paper: the extension of
Nagata’s Theorem to weakly Krull domains.

Theorem 4.8. (Nagata’s Theorem) Let A be a weakly Krull domain and let
B=,.., A, be a subinteraction of A with 8+ T C X'"(A). Then the homo-
morphism 0 :TI(A)— TI(B), given by 0(I)= (IB),, is surjective. Hence the
induced homomorphism 0 : C1,(A)— Cl(B) is also surjective; moreover, its kernel
is generated by the classes of t-invertible t-ideals primary to primes from
X(ANT.

Proof. We have already observed that ¢ is a homomorphism. To show that @ is
surjective, it suffices to prove that if J is a t-invertible t-ideal of B, then J N A is
t-invertible in A and J = ((J N A)B),. Let 2, . . ., ?, be the height-one primes of
B which contain J. Then J=0Q,N---N Q,, where Q, = JB, N B. Note that for
cach i, @, is P;-primary and JB, in principal (since J is t-invertible). Put
P=P NA. Then JNA=(Q,NAN---N(Q,NA), each O,NA is P-
primary, and {P,,..., P} is the set of (height-one) primes of 4 minimal over
JOA. Since (JNA)A, =JA, =JB, is principal, JN A is tinvertible [5,
Lemma 2.2] and is in fact a t-ideal since each Q,N A is a t-ideal [5, Corollary
2.3]. Now (JN A)B is t-invertible, and for ? & X‘“(B), we have ((JN
A)B)B, =(JNA)B, =(JNA)A,,,=JAs~, =JB,. Thus, since both (/N
A)B and J are t-invertible, we have

(JINAB),= (N (NAB.,= () JB,=J=1J.

?ex()(B) Pex(1)(B)

Now suppose that Q is a t-invertible P,-primary t-ideal, where P, € X'V(A\T.
Let ? € X'"(B), and set P=% N A. Then P # P,, and (QB)B, = QA, = A,,
whence (OB), = B and [Q] € ker 6. On the other hand, suppose that [I] € ker 6.
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We may assume that [ is an integral t-invertible t-ideal of A. Then (I/B), is
principal; say, (IB), = £ B for some a,b € A. Then (5IB), = B, that is, 51A, =
A, for each PET. Hence bIA, = aA, for each PET. Since A is weakly Krull,
we may write \

bl = (ﬁ (bIAp N A))l and aA= <1’__n[ (aAQ, N A))l .

i=1

Then a A =([]-, (ady N A)""),. This gives

bl = (ﬂ (bIA, N A)>t<f[] (ady N A)*‘)l .

i=1

Note that if some P, € T, then P, is one of the Q; similarly, if some Q, € T, then
Q, is one of the P,. Moreover, the corresponding t-invertible primary factors of
bl and aA are then equal. Thus for all P € T, any t-invertible factor of bl primary
to a prime in 7 must cancel out with the corresponding t-invertible primary factor
of aA. Deleting these factors we see that 57=(N,--- NN, ---N."),, where
each N, is a t-invertible t-ideal primary to a prime in XV(A\T. [

It is well known that a Krull domain A is a UFD if and only if CI(A) = 0. An
easy consequence of this fact and Corollary 4.3 is that if A is a Krull domain and S
a multiplicatively closed subset generated by principal primes for which Agis a
UFD, then A is a UFD. In [4] the concept of weak factoriality was introduced; a
domain A is weakly factorial if each nonzero nonunit of A is a product of primary
elements. In [6] it was shown that A is weakly factorial if and only if A is a weakly
Krull domain for which CI,(A) = 0. Although a deep treatment of weak factorial-
ity would be out of place in this work, we offer the following analogue of
Corollary 4.3. These ideas are treated more generally in [3].

Corollary 4.9. Let A be a weakly Krull domain, and let S be a multiplicatively
closed subset of A which is generated by principal primes. Then the homo-
morphism 6 : Cl(A)— Cl,(Ay) is an isomorphism. In particular, if A is weakly
factorial, then so is A.

Proof. As already mentioned, [2, Theorem 2.3] shows that 6 is injective. Hence
the conclusion follows from Theorem 4.8. [J

It is well known that for a Krull domain A, A[X] is a Krull domain and the
homomorphism 6 : Cl(A)— CI(A[X]) is an isomorphism. Now for any integral
domain A, the extension A C A[X] is t-linked; so we have homomorphisms
0 : TI(A)— TI(A[X]) and 6 : Cl,(A)— Cl (A[X]). Unlike the case where A is a
Krull domain, however, 6 need not be an isomorphism. In fact, Gabelli [17] has
shown that 6 is an isomorphism if and only if A is integrally closed. This leads to




122 D.D. Anderson et al.

the question of whether A weakly Krull implies A[X] weakly Krull. The answer is
no; we give the exact relationship in Proposition 4.11. First, recall a concept
introduced in [21]. A domain A is said to be a UMT-domain if every upper to
zero (a nonzero prime of A[X] which contracts to zero in A) Q of A[X] is a
maximal t-ideal (equivalently, is t-invertible).

Lemma 4.10. Let A be an integral domain. Then t-dim(A[X]) = 1 if and only if
t-dim(A) =1 and A is a UMT-domain.

Proof. First, assume that t-dim(A[X]) =1, and let P be a prime t-ideal of A.
Then PA[X] is a prime t-ideal of A[X], and ht(PA[X])=1. Thus ht(P)=1.
Hence t-dim(A) = 1. If Q is an upper to zero in A[X], then Q is a maximal t-ideal
since t-dim(A[X])=1. Thus A4 is a UMT-domain. To prove the converse,
suppose that N is a maximal t-ideal of A[X] with NN A#0. Then N=(NN
A)A[X] by [21, Proposition 1.1]. Since NN A is a t-ideal, it has height one, so
that ht(N)=2. However, if Q is an upper to zero, then (since A is a UMT-
domain) Q is a maximal t-ideal, so that Q & N. It follows that ht(N)=1, as
desired.

Proposition 4.11. Ler A be an integral domain. Then A X] is weakly Krull if and
only if A is a weakly Krull UMT-domain.

Proof. Assume that A[X] is weakly Krull. Then XV(A[X]) = € U U, where € is
the set of extensions to A[X] of height-one primes of A and % is the set of uppers
to zero. Let u be an element of K, the quotient field of A, and assume that
ue ﬂPEXm(A) Ap. Then it is clear that

ue M A[X]Qﬂ< M A[X]Q>= M A[X], = A[X].
eee oeu eex(Maxy)
Hence u € A[X]N K = A. Since the intersection clearly has finite character, A is
weakly Krull.
For the converse, note that t-dim(A[X])=1 by Lemma 4.10. Using the
notation of the preceding paragraph, a nonzero element f of A[X] lies in only
finitely many elements of & since A is weakly Krull, and it is clear that f lies in

only finitely many elements of %. Thus f lies in only finitely many primes in
XV(A[X]), and so A[X] is weakly Krull. [

For an example of a weakly Krull domain A for which A[X] is not weakly
Krull, let (A, M) be a one-dimensional quasilocal domain whose integral closure
is not a Priifer domain. Then A is trivially weakly Krull. However, dim(A[X]) =3
{19, Proposition 30.14], and it follows that A[ X] contains an upper to zero Q such
that O ¢ MA[X]. Thus A[X] is not a UMT-domain. However, since a Noetherian
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domain is a UMT-domain if and only if it has t-dimension equal to one [21,
Theorem 3.7] (if and only if every grade-one prime has height one), the situation
for Noetherian domains is just like that for Krull domains:

Corollary 4.12. Let A be a Noetherian domain. Then A is weakly Krull if and only
A[X] is weakly Krull. O

As mentioned above, if A is a Krull domain, then A[X] is a Krull domain with
the same class group (up to isomorphism). We have seen that there is no analogue
of this result for weakly Krull domains. The following result characterizes those
weakly Krull domains for which such an analogue exists. Recall that an integral
domain A is a generalized Krull domain if A is a finite character intersection of
rank-one essential valuation overrings [19, Definition 43.1].

Corollary 4.13. For a domain A the following conditions are equivalent.
(1) A is a generalized Krull domain.
(2) A is a weakly Krull PYMD.
(3) A[X] is weakly Krull and Cl1,(A) = Cl (A[X]).

Proof. If A is a generalized Krull domain, then A is weakly Krull by [19,
Corollary 43.9], and A4 is a PVMD by |20, Theorem 7]. It is clear that a weakly
Krull PVMD is a generalized Krull domain. Hence (1) and (2) are equivalent.
According to [21, Proposition 3.2], A is a PVMD if and only if A is an integrally
closed UMT-domain. Since A is integrally closed if and only if Cl,(A)=
Cl(A[X]) [17]. the equivalence of (2) and (3) follows easily. [J
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