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i. Introduction.

Let R be a {commutative integral) domein. Among the numerous
overring-theoretic characterizations of Prifer domsins is the following
result of Davis ID, Theorem 1l: R is a Prifer domain if and only if
each overring of R is integrally closed. One goai of our work, realized
in Theorem 2.10 below, is to obtain an analogous characterization of
Prisfer v-multiplication domains, or PVMD’s for short. (A PVMD is a
domain R such that Rp is a valuation domain for each prime t-ideal P of
R. A convenient reference for PVMD's is IMZ1]1) To this end, we meke
the following definition. An overring T of R is t-linked {(over R) if, for
each finitely generated fractiomal ideal A of R such that A"l -~ R, one
hos (AT)'l = T. {Proposition 2.2 identifies several families of t-linked
overrings: the connection with the t-operation is indicated in
Proposition 2.1.) As a generalization of [H, Proposition 1.6}, it was
ach t-linked

shown by Kang [K}, Theorem 3.8 and Corollary 3.9]
overring of a PVMD is itself a PVMD {(and, hence, int
Theorem 2.10 gives the loliowing generalization of Kang's result: R is a

PVMD if (and only if) each t-linked overring of R is integrally closed.
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Additional connections between “t-linked” and “PVMD” are given.

For instance, Corollary 2.4 establishes that the complete integral

closure of a PVMD is (i-linked and hence} a PVMD. As for whether the
integral closure of R is t-linked, we give am affirmative answer in ihe
Noetherian (indeed, quasicoherent) case: see Corollary 2.14 (2. Im
addition, Corollary 2.18 and Remark 2.19 serve to identify the proper
subclass of PVYMD’s R characterized by “each t-linked overring of R is
R-flat.” This assertion is to be conirasted with the result of F.
Richman [R., Theorem 4} that “each overring of R 1is R-fiat”
characterizes the Pritfer domains R. Also noteworthy f(and useful) is
Theorem 2.6 characterizing the domains R such thet every overniog of
R is t-linked.

Despite the above emphesis on Priferian motivation, 1t shounld be
noted that Krull domains form another impertant class of PVMD’s.
Their relevance to a “t-linked” study is clear since there exist
numerous characterizations of Krull domains in terms of the t-operation
(cf. IMMZ], IMZ2], [HZ}, {K2], and [Gel. This motivation is felt in
Remark 2.8 (b) and in two mew characterizations of Krull domains {see

Corollary 2.22).

Throughout, R denotes a domain with integral closure R/,
complete integral closure R*™, and quotient field K. The set of all
resp., all finitely generated) nenzerce T ractional ideals of R is denoted

by F(R) (resp.. by f(RD.

2. Results.

Before characterizing i-linked overrings, we shall provide 2 brief
review of two imporiant star-operaticns on the fractional ideals of 2
domeain R. For A € F(R), we define Ay = (A”I)"i and A, = JFwy,
where F ranges over the finitely generated fractional ideals contained in
A. It is easy to see that Ay = Ay if A < f{R). We say thal A is
divisorial or 2 v-ideal if A, = A; and that A is a {- ideal if A, = A.

Since A T Ay C As in general, each divisorial ideal is a t-idezl. By &
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t-prime (of R), we mean a prime ideal of R which is alsc a t-ideal. It is
known that each height 1 prime ideal iz a t-prime. More generally, any
ideal of the form {(Rb:iga), with = and b ic R \ {0}, iz a t-ideal; any
is a t-prime; and, in fact, any prime minimal over a i-ideal is a t-prime.
Moreover, any t-ideal is contained in 2 maximal t-ideal, which is
necessarily prime. Proofs of these and other facis about star-

operations may be found in [G, Sections 32 and 34} apd in LIl

PROPOSITION 2.1. Let T be am overring of a domain R. Then the

foliowing conditions are equivalent:

(1) T is t-linked over R; that is, if A € F(R) and A™} = R, then
(AT = T;

() If A € FR) end A, = R, then (AT), = T;

(3) If Qis a t-prime of T, then (Q N R}y = R.

Proof. (1) = (2): Tt suffices to note that if B £ f(R), then gl
_ R o B, = R. (ndeed, Bl = R = By = By = @O = R = B
and B, = R = B = By =@t = r =R

() = (3): Deny. Then there is a t-prime Q of T such that
@ N Ty = R so, Ay = Ay =R for some A & f(R) such that &
Q M R. By ), (AT) = T. However, (A1), © Qp = -

3

W

contradiction.

(3) = (2): Deny. Then there exists A & {(R) such that A, = R
and (AT); = T. By the above remarks, the t-ideal (AT), lies in some
maximal t-ideal Q of T. Since A C (AT){£ AR C QMR CRand Ay
— R, it follows that (Q N R}y = R, contradicting (3. O

We next give some examples of t-linked overrings.
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PROPOSITION 2.2. Let R be a domein. Then:

{2) Any directed union of t-linked overrings of R is t-linked over

(b) Any intersection of i-linked overrings of R is t-linked over R.

(¢) Any R-flat overring of R is t-linked over R.
(d) Any generalized transform of R is t-linked over R.
(e) If A € F(R), then (A As) is  t-linked over R.

Proof. (a) Let {Ty) be a directed set of t-linked overrings of R,

and consider the overring T = UTy. Suppose A < T(R) =atisfies A'l
= R. Wse shall show that {ATT1 = T. Note that (A’I‘c._}"jL = Tg for
each o, since Ty is t-linked. Write A == Ra; 4+ Ray + - -+ Rak, and

consider any u € (AT)'}‘. For each i, 1 < i < &, there exist o such
that ua; € Te, - By directness, there exists o such that wa; € To for
all i, and se uA C Tg. Hence u € (ATQ)'K = Tg C T. This proves
thet (A'I")’1 C T. The reverse inclusion is evident since Al =R

implies that A C Ay = R™F = R.

(b) Consider T = MNTg, where sach Ty is 2 t-linked overring
of R. Suppose A £ f(R) satisfies A"l = R. We shall show that if u €
(ATYL, then u € T. Since uA = T & Tq for each o, we have u €

(A’I‘m)"1 = T3 thus, u € NTy =

{¢) Let T be an R-flat overring of R. Suppese A € (R}
satisfies A'l = R. Write A = Rei + Ray + - . Rak, with each 2,
= 0. Then am?t = w e K: ug; € T for eech i} = ﬁT‘ai'1; so by
flatness {cf. [Je, Theorem 11, this intersection is just T(s’“;Rai’i}.

Hence, x{A"{')’EL = TA"l = TR = T.

(d) This is due to Kang [K1, Lemma 3.10}, and is inciuded here

for the sake of completeness.

{e) Put T = {Ay :KAV), and suppose B € f(R) satisfies pl = r.
We shall show that if u € (BT)'I, then u = T. Indeed, uB T and so
uBA, T Ay . By applying the v-operation, we find ulAvy C Aw, whence

u & {(Ay :KAV) =T, O

P\.n
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COROLLARY 2.3. if R is a domain, then R™ (the complete

integral closure of R) is t-linked over R.

Proof. If A and B are in F{R), it is straightforward to check

that (Ay Ay) and (By 1By} are each contained in MAB)V:K(AB)VL By

Proposition 2.2 (e}, it follows that R™ is a directed union of t-linked
overrings of R. (See [F, Lemma 3.i] and observe that (A:KA} -
{AV:KAV) for A € F(R).) The assertion now follows from Proposition

2.2 {a). O

CORCLLARY 2.4. The complete integral closure of a PYMD 18 a
PVMD.

Combine Corollary 2.3 with the result of N1,

Proof.

REMARK 2.5. In the definition of “4-linked,” there is no a priori
reason to take the extemsion domain T fto be an overring of R. We
have chosen the simpler setting of overrings for this paper because of
the intended applications. Some of what we do here, such as the (role
of [Je, Theorem 1} in the) proof of Propesition 2.2 (¢}, carries over to

the expanded context.

For any domain R, both R and K ave tlinked over R. Thus, if R
is a valuation domain of (Kruil) dimension at most 1, all its overrings
are t-linked (since R and K are its only overrings). Which domeains R
have the property that each overring of R is t-linked? The next two
resulis answer this question, identifying a cless containing all vsluation

domains, all one-dimensional domains, and more.

THEOREM 2.6. For a domain R, the following conditions are

equivalent:
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(1) Eech overring of R is t-linked over R;

(2) Each valuation overring of R is t-linked over R;
(3) Fach maximal ideal of R is a t-idesal;

(4) Each proper nonzero idesl I of R satisfies I; R;

(5) FEach proper nonzero finitely generated ideal I of R satisfies
it 7= R
(6) Each %-invertible idesl of R is invertible.

Proof. Eeach of the implications (1} = (2} (3} = (4), and (4) = (5
is trivial.

(2) = (3): Deny. Choose & maximal ideal M of R such that M is
not a t-ideal. As M L; M, T R, it follows that M, = R, and so A, =
R for some finitely generated ideal A C M. Next, choose a valuation
overring (V,N) of R such that N N R = M (cf. [Kp, Theorem 561.
Since finitely generated nonzero ideals of a wvaluation domain are
principal (and hence divisorial), (AV), = Ny == N § V. In wview of
Proposition 2.1, this contradicts the assumption that V is t-linked over

R.

(3) = (1): Deny. Bv Proposition 2.1, there exists an overring T
of R and a t-prime Q of T such that (Q N R)t = R. On the other
hand, Q N R lies in some maximal ideal M of R, and My, = M by (3.
Hence, R = (Q NR) T M, =M g R, a contradiction.

(5) = (6): Let I be 2 t-invertible idesl of R; that is, (I'), = R.
So A, = R for some finitely generated A T H'l. By (5), A = R, and

S0 II"1 = R; that is, I is invertible.

(6) = {(4): Deny. Hence some proper monzero ideal I of R
satisfies I, = R. Then [ is t-inveriibie, hence invertible by {6), hence
divisorial, and hence a t-ideal. In other words, It = 1, contradicting

I, = R. O
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We next recall some background from [Del. Let R be a domain.
Then R is said to be a going-down domein (vesp., treed) if R C T
satisfies going-down for each overring T of R (resp., if Spec (R}, as a
poset under inclusion, is a tree). Each Priufer domein is a going-down
domain; so is each domain of dimension at most 1. Each going-down

domain i1s treed; the converse is false.

COROLLARY 2.7. Let R be a domain. Then each overring of R

is t-linked over R in each of the following cases:
fa) R is a Prufer domain;
(b) dim (R} < 1;
{(c) R is a going-down domain;
(d) R is treed.

Proof. By the above remarks, (a) = (c), (b) = (c), and {c) = {d).
So, we may assume that R is treed. By Theorem 2.6, it will suffice to
show that each maximal ideal M of R is a t-ideal. For each m &
M \ {0}, there exists an associated (t-} prime P such that m & P M.
Since R is treed, M is therefore a directed union of t-primes Po - If
M, = R, then 1 € (UPq), and so, by directedness, 1 € (Py)y for some

o, contradicting (PQ_)t = Py C R. Hence M, = R; that is, My = M. O

REMARK 2.8. (a) Suppose that R is a domain such that
whenever A € f(R) satisfies A’}‘ = R then (a,b}y = R for some 8, b <
A. In this case, the conditions in Theorem 2.6 are also equivaleni to
“each simple overring of R is t-linked.” To see this, suppose that a
proper two-generated I = {(a,b) of R satislies I, = R; cur task is to find
a simple overring T of R which is not t-linked. To this end, find a
valuation overring ¥ of R in which | survives (cf. [Kp, Theorem 56D.
Without loss of generality, I¥ = bV since V is valuation. We shall
show that the simple overring T = Rla/b] is not t-linked. Indeed, (ET)”l

— w1l = b7 T s T, although It = @t = @yt — R = R
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(b) It is known {cf. [M, Theorem 1]} that a domain R is a Prifer
domain if and only if R is an integraily closed treed domain such that
Ra N Rb is Tinitely geserated for all a, b £ R. Despite Corollary 2.7,
there exists an integrally closed domain R such that each maximal ideal
of R is a t-ideal, for each 2 end b in R there exists A € f{R) such that
Ra i Rb == At’ and R is not a Priifer domein. For such an example
consider a two-dimensicnal integrally closed Mori domain each of whose
maximal ideals is diviscrial. (A Mori domein is one which satisfies the
ascending chain condition on divisorial ideais.) An explicit exampie is

given by (K + XK YD prosr (cf. [RG, Example 4.6 (b)D.
Xhi;»,Y}

(¢) It is well known {cf. [MZ1, Proposition 4.4]} that a domain R
is 2 Priifer domein if (and only if) R is 2 treed PVYMD. In fact, R is 2
Priifer domein if (and only if) R is a ireed P-domain. (Recail that R is
said to be a P-domain if RQ is 2 valuation domein for each associated
prime Q of R.) To see this, we show that Rp is 2 valugtion domain for
each ponzerc P € Spec (R}. Note that Rp = I (RP}QRP = QRQ, where
Q ranges over the associated primes contained in P (cf. [Kp, Exercise 20,
page 421). By the hypotheses, RP is the intersection of a chain of

valuation domains, and hence is valuation. O

We next record a key step in our peth io generalizing Kang's

result.

PROPOSITION 2.9. Let R be a domain, P a t-prime of R, and T an
overring of R. Then TR\P is t-linked owver R.

Proof. We shall verify condition (3) in Propesition 2.1. Let Q
be a (not necessarily t-) prime of TR\P‘ Since @ M R < P, we have
QNRy CP, =P CR. O

==

The next result is our generalization of [Ki, Coreliary 3.91 and
analogue of [D, Theorem 1}. First, recall (cf. [GHL] that a domein R is
called seminormal if, whenever u € K satisfies uz & R and w- £ R, then

u £ R.
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THEOREM 2.10. For a domain R, the following conditions are

equivalent:
(1} Fach t-linked owverring of R is integrally closed;

() R is integrally closed and each t-linked overring of R is

seminormal;

(3 R is a PVYMD.

Proof. (3} = (1)

ever, we offer the following alternate

approach, making use o echnigues that will see service again in
Proposition 2.13. It suffices to show that TQ is a valuation domain
for each t-linked owverring T of R and each t-prime Q of T. Using
Proposition 2.1, we find a (maxime}l) t-prime P of R such that (Q M R}t
< P. Then TQ is an overring of the wvaluation domain RP, and so is

1tself a valuation domain.

(1) = (M- R is t-linked over R; and integrally closed =

seminormal.

() = {3): We shell show that R is a PVMD by verifying that
RP is a valuation domain for each t-prime P of R. It suffices to show
that if u € K \ {0}, then either u or ul is in RPQ By Propositicn 2.9,
A = R[uz,ule\P is t-linked over R, and hence seminormal by (2). It

3 are in A. Viewing A as

follows that u & A, since both .uz and u
RP[uz,u3], we see that h{uw) = 0, for some h € RP{X} such that the
coefficient of X in h is 1. BSince Rp is integrally closed, the (u,u"l)«

Lemma (cf. [Kp, Theorem 67]) yields that either u or u'1 is in RP' 0

The literature contains several examples of a P-domain R (indeed
a locally PVMD) which is not 2 PVMD. One such is given in [MZI,
Example 2.1]. It can be shown that every maximal ideal of this R is a
t-ideal. Thus, by Theorem 2.6, each overring of this R is t-linked; but,

by Theorem 2.10, not every (t-linked) overring of R is seminormal.
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Recall from [GHZ1 that if R is a domain, then the unigue minimel
overring S of R is (if it exists) a proper overring S of R such that 5 -

T for each proper overring T of R.

COROLLARY 2.11. For a domain R, the following conditions are

egquivalent:
(1) Each proper t-linked overring of R is integrally closed;

{2} Either (&) R is a PVYMD or
(b) R has a unigue minimal overring S end S is a
Priifer domain. (Moreover, in this case, R is

guasilocal.)

Proof. (2) = (1): Given (a), apply [KI, Theorem 3.81 or Theorem
2.10. Given (b), notice that each proper cverring of R is an overring of
S, hence is a Priiffer domain {(cf. [G, Theroem 26.1D, 2nd hence is

integrally closed.

(1) = (: By Theorem 2.10, we may assume thet R is not
integrally closed. Now, write R = GRF, where P ranges over the
associated primes of R. If eacikx such RP is distinct from R, it foilows
from Proposition 2.2 (c) and {1} that R is the intersection of integrally
closed overrings, contradicting R = R’. So, (R,M) is guasileocal for some
associated (henmce, t-} prime M of R. By the implication (3) = (1) in
Theorem 2.6, ecach overring of R is t-linked. Thus, by {1}, each proper
overring of R is integrally clesed. Such R have been cataiogued (see
either IMG, Theorems 10, 12, and 13] or [AADH, Remark 3.2 (.

Applying these classification resuits yields o). 0

Condition (2) in Theorem 2.10 is remimiscest of [ADH, Theorem
2.31, characterizing the domains sach of whose overrings is seminormal.

We pext record another “t-linked” variant of such work.

CORGLLARY 2.12. Let R be a domeain such that each t-linked overring
of R is seminormel. Put T = M R’R\P, where P ranges over the t-
primes of R. Then T is 2 PVMD.
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Proof. We shall show that TQ is a valuation domain for each t-
prime Q of T. In fact, we shell show that if u € K\{0}, then either u
or u"l is in TQ. First, note via Proposition 2.9 and Proposition 2.2 (b}
that T is t-linked over R. Moreover, by Proposition 2.9, A =
TQ{uz,u?’} = T[uz,uS}T\Q ig t-linked over (T and hence over) R. So, by
hypothesis, A is seminormal. Therefore u & A and, as in the proof of

4
Theorem 2.10, TQ contains either u or u™'. O

Next, we further investigate the ring T constructed in Corollary

2.12, in order to shed light on whether R’ is t-linked over R.

PROPOSITION 2.13. Let R be a domain and T an overring of R. Then:

{(a) T is t-linked over R if and onily if ﬂTR\P = T, where P

ranges over the t-primes of R.

(b) R has a smallest integrally closed t-linked overring, namely

i R,R\P’ where P ranges over the t-primes of K.

Proof. (a) The “if” assertion is direct via Propositions 2.9 and
2.2 (b). Conversely, suppose that T is t-linked over R, and put A =
N TR\P’ where P ranges over the t-primes of R. If Q is a t-prime of T,
it follows from condition (3) in Proposition 2.1 that (Q N R)y = K, and
so Q N R C P for some t-prime F of R. Hence RA\P C T\Q, vielding
TR\P L TQ. Since T == :"‘;TQ, we have A < T. As the reverse
inclusion is evident, = T.

(b) Let B be integrally closed and t-linked over R. Then B O
R’, whence by f(2), B = QBR\P ) ﬂR’R\P‘ Of course, ﬂRlR\P is
integraily closed and, as in the proof of Corollary 2.12, alse t-linked

over R. [0

Recall from [BAD] that an integral domein R is said to be
guasicoherent if each intersection of finitely wany principal ideals of R
is {initely generated. Each coberent domain is guasicoherent; hence, so

is each Noetherian domain.
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CORQLLARY 2.14. Let R be 2 domain. Them:
(a) If R is guasicoherent, then R’ iz t-linked over R.

(b) If R is guesicoherent and each t-linked overring of R is

seminormal, then R’ is 2 PVYMD.

Proof. (a) We modify an argument of Beck (cf. [F, Lemmz 4.5)
originally designed for the Noetherian case. We shall show that if A =
Ral 4 e b Rak € f(R) satisfies A'l == R, then (AR')"i = R’, Consider

u = {AR’)"i. As uA C R each a; leads to a finitely generated ideal T;
of R such that ual; C [, (cf. [Kp, Theorem 121). Note that I = Hii is

-

finitely generated. Moreover, uaii I for each i; therefore uAl < L
Applyving the wv-operation, we find that uly, < Iv. In addition,
quasicoherence assures that I, is finitely generated (cf. [BAD, page
1122]). Another application of [Kp, Theorem 12] vields that (I :K.{v) -

R’, and so u € R’, as desired.
(b) By () and Proposition 2.13 (a), O R,R\P = R’, where P ranges
over the t-primes of R. The assertion now follows from Corollary

2.12. B

REMARK 2.15. For any domain R, the pseudo-integral closure of R is

defined to be R = U _ (Ay :KAV). It is easy to see that R* C R <

R™; it can also be shown that R is integrally closed. Just as in the
proof of Cerollary 2.3, one shows that R is t-linked over R. Hence, via
Thecrem 2.10, we see that if each t-linked overring of R is seminormal,
then R is a PVMD. Pseudo-integral closure is the subject of a
manuscript im preparation by D. ¥. Anderson and the second- and

fourth-named authors.

Our next goal is 2 “t-linked” anslogne of Richman's flat-theoretic
characterization of Priifer domains (R, Theorem 4]. This will be given
in Coreollary 2.18. First, we give two results abouf overrings of a

PVMD. It will be convenient to let a subintersecticn of a PVMD, R,



£-LINKED OVERRINGS 2847

mean any interseciion ﬂRP, where P ranges over a set of some prime -
ideals of R. Kang IK1, Theorem 3.8] proved that an overring T of 2

PVMD, R, is a subintersection of R « T is t-linked over R.

PROPOSITION 2.16. Let R be a PYMD, let A € f(R), end let T be =&
subintersection of R, Then (AVT)VT = (AT)VT’ where v denctes the

v-operation on the fractional ideals of T.

Proof. R == ."sRP , where {Pﬁ} iz the set of all t-primes of R.

By hypothesis, T = N Q0 where {Qn} O {Pﬁ); this representation

induces a star-operation which we denote by *. (See [G, Theorem 32.51
Now

Ay Tl = “AVTRQQ = ATRQQ == (AT o
where the second equality follows easily from the fact that RQO: is &
valuation domain. Applying v to the displaved eguation yields

(AVT)VT = (AT)VT, as asserted. O

PROPOSITION 2.17. let R be a PYMD and T a subintersection of R.
Then T is R-flat if and only if AyT is divisorial in T for each A =
f(R).

Proof. Assume T is R-flat. It is known (see the proof of
Proposition 2.2 {(¢)} that {BT)"1 — B YT for ail finitely generated

-1
fractional ideals B of R. Now, let A & f{R). Since R is # PVMD, A" =
'1":*

&

By for some finitely generated B. Then AT = (B\,—)'AT = B
(BT)"L, which is divisorial.

Conversely, suppose thet AT is diviserial for each A £ FR).
We shall show that T is R-flat; it suffices (cf. IF, Lemma 6.5]) to show
that {AT)'1 = A“lT for all A € f(R). As above, A"1 = By for some

finitely generated B; and we let » denote the ster-operation induced by

the representation T == 0N RPG . Then (AT}_1 = ((AT)'I)* =
- -1 -1 ~a-t B -

ATY 'R — M{AR . — - )
M(AT) Py (A Pm‘) MA TRPU_ (A7 Ty (B T
However, By T is divisorial by virtue of the hypothesis and, a fertiori,
coincides with (By Tl - Therefore, PN ByT = (ByThe =

(aTyL o
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By reasoning as above, one may prove the feollowing result. Let
T be an overring of the PVMD R. Then T is E-flat if and only if
(AT}VT = AyT for each A € f(R). This result does not seem to be

known even in the well-studied case of Krull domains.

COROLLARY 2.18. Let R be a domain. Then each t-linked overring of
R is R-flat if and only if R is a PVMD such that AyT = (AT)y . for

each A ¢ F(R} and each subintersection T of R.

Proof. The “if” half follows directly from the assertiops in
Proposition 2.17. Conversely. assume that each t-linked overring of R
is R-flat. Let P be an associated prime of R. Then the maximal ideal
of RP is an associated prime, hence a t-ideal. By the implicetion (3} =
(1) in Theorem 2.6, each overring T of Rp is t-linked over Rp, and
hence t-linked over R {(using Proposition 2.2 (¢}). Thus T is R-flat and,
by {R, Lemma 2], therefore R‘,Pw"im. By [R, Theorem 4], RP is 2 Prifer
{and, hence, valuation) domein. Thus R is a P-domain. By Propositions
2.16 and 2.17, 1t remains only to prove that R is a PYMD. By Theorem
2.10, it suffices to show that each t-linked overring S of R is integrally
closed. Since S is R-flat, S is an intersection of localizations of R by
[R, Corollary, page 795], and so Proposition 2.2 (b}, {¢} vields that S is

integrally closed. OO

REMARK 2.19. The eguivaient conditions in Ceorellary 2.18 de not
characterize arbitrary PVMD’s. One need only comsider an example,
such as [F, page 32}, involving a Krull domain (hence PVMD} R having 2

subintersection (hence t-linked overring) T such that T is not R-flat.

We shell close with some applicetions 2o Krull domains. For
partial motivation, recall that [BD, Section 3! studied the domains eesch

of whose overrings is a Mori domain.

PROPOSITION 2.20. Let R be a domain such that each t-linked overrcing

of R is 2 Mori domain. Then:
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{a) Each divisorial prime of R heas height 1.
(b) R™, the complete integral closure of R, is a Krull domain.

Proof. f(a) Let M be a divisorial prime of R. By [HLY,

Proposition 1.1 (v)}, MRM is a divisorial {hence, t-) prime of Ry,. As
RM inherits the hypotheses f{cf. Proposition 2.2 {c)}, it follows wvia
Theorem 2.6 that each overring of RM is a Mori domain. Thus, each
non-trivial wvaluation overring of RM is = (one-dimensionall} DVR [BD,
Theorem 3.4], whence [G, Propesition 42.16] yields thet 1 = dim(RM} ==
ht(M).

2

(b} By Corollary 2.3 and the hypothesis, R™® is Meori, and so it
suffices to show that R™ is completely integrally clesed. By (aj, R* =
{7 R*M, where M ranges over height 1 primes of R*. As R™ is
integrally closed {G, Thecrem 13.1], so is each R*M; hence R*M is an
intersection of wvaluation overrings Vo . As in the proof of (a), each
Vo is a DVR, hence completely integrally closed. Thus R™ is an

intersection of completely integrally clossd overrings. 0

REMARK 2.21. Neither of the implications in Proposition 2.20 can be

reversed. Indeed, consider the one-dimensional domain D =

Q + X}R{X](X). The complete integral closure of D is R[X](X), which is
a Krull domain. By Corollary 2.7 (b), each overring of D is t-linked
over D. In addition, it is easy to show that D is not 2 Dedekind
domain. Therefore, it follows from [BD, Theorem 3.4} that some {t-
linked) overring T of D is not a Mori domain. In fact, Q=i + XR{X}(X}

is such a T.

COROLLARY 2.22. For a domain R, the fellowing conditions are
eguivalent:

(1) R is integrally closed and each t-linked overring of R is &
Mori domain;

(2) R is a Mori domain and each %-linked overring of R is

integrally closed;
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(3) R is 2 Krull domein.

Proof. (3} = {1 and (2)}: Let R be a Krull domain and T =2 t-
tinked owverring of R. By K1, Theorem 3.8}, T is a subintersection of
R. By [P, Corollary 1.5}, T is a Krull domain; hence, T is a (completely)

integrally closed Mori domain.
(2} = (3: Couple Theorem 2.10 with the fact that any Mori

PYMD is a Krull domein (cf. [Z, Coreollary 2.2D.

(1} = (3): By (1), R iz a2 Mori domain. Moreover, R is
completely integrally closed since, by adapting the proof of Proposition
2.20 (b), we see that R is an intersection of rank one DVR overrings.

Papv

Hence, R is a Kruil domain. U

In closing, we point out the following conseguence of Coreliary
2.22. If R is a domeain such that R’ is t-linked over R and each t-
linked overring of R is a Mori domain, ther R’ is a Kruil domein. Aleng
with (2.12) - (2.15), this reinforces the importapce of the open guestion
as to whether R’ is t-linked over R for each domain R. Notice that this
is altogether different from the guestion whether, for each (not
necessarily finitely generated) ideal A of R, A'i = R implies that

(ARD)™! = R’. The latter guestion is snswered in the negative by

considering the example R = k{{X2n+1Yni2n+”}g;O} {cf. [GH1D, which

has integral closure R’ = k[{X‘x’ﬂ};igi. It is not difficult to show in

“(2“+1)}1‘1;10) satisfies

this example that the maximal ideal M == {€X2“+1Y’

M1 = R ana (MRYY = R
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