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ABSTRACT. This sequel to our work on t-linked overrings introduces, charac-
terizes, and applies the t-theoretic analogues of integral domains satisfying the
QR- and QQR-properties. In particular, we show that, unlike the situation
with QQR-domains, the 1QQR-property is stable under the adjunction of an
indeterminate.

INTRODUCTION

In [DHLZ], we showed how the notion of a t-linked overring permits studies
of Priifer v-multiplication domains (PVMD’s) in the spirit of earlier work on
Priifer domains. A case in point, which is needed below, is [DHLZ, Theorem
2.10]: a (commutative integral) domain R is a PVMD < each t-linked over-
ring of R is integrally closed. The next natural step is to seek a f-analogue
of QR-domains, a type of Priifer domain introduced by Pendleton [P]. (QOR-
domains, defined as the domains for which each overring is a ring of fractions,
have been further characterized in, e.g. [GO, Do].) We shall say that a domain
R has the tQR-property if each t-linked overring of R is a ring of fractions of
R . Theorem 1.3, the main result in §1, achieves the t-theoretic analogue of [P,
Theorem 5], by characterizing the PVMD’s with the 1Q R-property.

The next natural step in this program is to study the t-analogue of QQR-
domains (in the sense of [D, GH]). §§2 and 3 are devoted to the 1QQ R-property.
A domain R has the tQQR-property if each t-linked overring of R is an
intersection of localizations of R. As expected, PVMD’s are characterized
as the integrally closed domains with 1QQR-property (Proposition 2.1), and
several preliminary results in §2 retain the flavor of [GH]. However, the analogy
breaks down in some important ways. For instance, QQR is a local property
[GH, Theorem 1.9], but tQQR is not, essentially because PYMD is not [MZ,
Example 2.1]. This is remedied in the main result of §2, Theorem 2.8: a domain
R has the tQQR-property < R, has the QQR-property for each maximal ?-
ideal P of R. Another way in which the /QQR theory diverges from the QQR
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case concerns the rarity of unique minimal overrings: see Proposition 2.5. Other
noteworthy applications of the /QQR concept in §2 include characterizations
of the QQR-property (Corollary 2.7) and of Krull domains (Corollary 2.10).

Proposition 3.2 establishes that if R has the tQQR-property, then R is a
UM T-domain, in the sense of [HZ]. This is used in the proof of the main result
in §3, Theorem 3.5: if R has the tQQR-property, then so does the polynomial
ring R[X]. (The analogue for quasilocal Nagata rings is valid and needed: see
Lemma 3.4.) We see Theorem 3.5 as important because it gives many examples
of domains with the rQQR-property that do not retain the “treed” Priiferian
flavor of the typical QQR case.

In this sequel to [DHLZ], we assume familiarity with basic z-theoretic notions
(z-prime, maximal t-ideal,... ) and PVYMD’s (as in [Gr, MZ], for instance).
The reader will find it convenient to have a copy of [DHLZ] at hand. (Here
is its basic definition: an overring 7 of a domain R is -linked over R if
A""=R fora finitely generated ideal 4 of R implies (AT)—1 = T7'.) Finally,
our terminology generally follows [G]; moreover, most ideals are tacitly nonzero
and B’ denotes the integral closure of a domain B.

1. TRANSFORMS AND THE /() R-PROPERTY

The main result of this section is a characterization of the PVMD’s satisfying
the rQR-property. Here, and below, if A4 is an ideal of a domain R , the ideal
transform of A is, as usual, T(A4) = U,>; 4 ". We begin with a generalization
of [G, Proposition 26.4]. -

Lemma 1.1. Let A be a finitely generated ideal of a domain R, and let T(A)
denote the ideal transform of A. Then T'(A) =(WRp: P is aprime of R with
A¢ P} = ({R,: Q isa t-prime of R with A ¢ Q}.

Proof. Let x € T(A). Then xA4" C R for some n, whence A C Rad(R: x).
Hence if P is prime and 4 ¢ P, then R: x ¢ P and so x € R, . It follows
that T'(4) C ({R,: P is a prime of R with 4 ¢ P}. To complete the proof,
it suffices to show that if y e ﬂ{RQ: Q is a t-prime of R with A4 ¢ Q}, then
y € T(A). For such a y we have (since R:y is a t-ideal) that Rad(R: y) =
({Q: Q isa t-prime containing R: y}. Now for any f-prime Q not containing
A, we have that y € RQ, so that R:y ¢ Q. It follows that A4 C Rad(R: y).
Thus, since A is finitely generated, 4™ C R: y for some m,and y € T(A4),
as desired. 0O

The construction in the next result is motivated in part by [DHLZ, Proposi-
tion 2.13(a)].

Lemma 1.2. Let R be a PVMD with quotient field K , and let x € K. Then
T(R: x)= ﬂ{R[x]R\P: P isa t-prime of R}.

Proof. Let S = ﬂ{R[x]R\P: P is a t-prime of R}. By [DHLZ, Propositions
2.2(b), 2.9, and 2.13], S is the unique smallest overring of R[x] which is ¢-
linked over R. Hence by [K, Corollary 3.8], S = N R, , where the intersection
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is taken over some set of prime t-ideals of R. It follows that S ={\{R,: Q is
a t-prime of R for which § C RQ}. If P isa t-prime of R, then since R, is
t-linked over R, S C R, & R[x]C R, < R: X ¢ P. Hence S = ﬂ{RQ: 0 is
a t-prime of R with R: x ¢ Q}. Since R is a PVMD, [Z1, Lemma 8] implies
that there is a finitely generated ideal 4 of R for which R: x = 4, . Since
for any ideal B we have T(B) = T(B,), the result now follows from Lemma
1.1. O

We now give the PVMD-analogue of [P, Theorem 5].

Theorem 1.3. Let R be a PVMD. Then R has the tQR-property < for each
nonzero finitely generated ideal A of R, we have A" C (b) C A, forsome n>1
and some b€ R.

Proof. (<) Let T be a t-linked overring of R, and put S = U(T)NR, where
U(T) denotes the set of units of 7". We shall show that 7' = Ry. Accordingly,
let x € T. Since R isaPVMD, R: x = A, for some finitely generated ideal A
of R. By hypothesis, there is a positive integer n and an element b of R with
A" C (b) C A4, . It follows that T(R: x) = T(b) = R[1/b], so that T(R: x) is
a quotient ring of R. Moreover, by Lemma 1.2 and [DHLZ, Proposition 2.13
(a)], R[1/b] = T(R: x) = ﬂ{R[x]R\P: P is a t-prime of R} C ﬂTR\P =T.
Hence b U(T)NR =S, and so x € R[1/b] C Ry. Therefore, T C R, and,
the reverse inclusion being obvious, this half of the proof is complete.

(=) Let 4 be a finitely generated ideal of R. Set T = T(4)(= T(4,)).
By Lemma 1.1, T = (\{R,: P is a t-prime of R with 4 ¢ P}. Hence T is
t-linked over R, and so, by hypothesis, there is a multiplicatively closed subset
S of R with T =R,. By [DHLZ, Proposition 2.17], since T is flat over R,
(4,T), = A,T. Moreover, it is clear from the definition of ideal transform
that (AT), = T. It follows that 4, T = T, whence 4, NS # ©. Choose
beA,NS. Then b~ e T and so, again by definition of the ideal transform,

there is an integer n for which b 'A" C R, as desired. O

2. THE tQQR-PROPERTY

We begin by introducing the z-theoretic analogue of the QQ R-concept devel-
oped in [GH]. Recall that a domain R has the tQQR-property if every t-linked
overring of R is an intersection of localizations of R.

Our first few results are analogues of results in [GH] on domains with the
QOR-property. The proof of the first of these uses a result from [DHLZ] that
was mentioned in the introduction.

Proposition 2.1 (cf. [GH, Corollary 1.7]). 4 domain R is an integrally closed
domain with the tQQR-property < R is a PVMD.

Proof. If R is a PYMD, then R has the tQQR-property by [K, Theorem 3.8].
Conversely, if R is integrally closed and has the tQQR-property, then every ?-
linked overring of R is also integrally closed, and so R is a PVMD by [DHLZ,
Theorem 2.10]. O
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Gilmer and Heinzer prove [GH, Theorem 1.6] that if R has the QQR-
property, then the integral closure of R is a Priifer domain. We are unable to
prove the analogue for the 1QQ R-property, because we do not know whether the
integral closure of a domain R (even with the tQ () R-property) need be z-linked
over K. (For a positive result in this direction, sce [DHLZ, Corollary 2.14(a)].)
However, we do show below that the pseudo-integral closure of a domain with
the 1QQR-property is a PYMD. Recall that if R isa domain with quotient field
K . the pseudo-integral closure of R is defined to be R = xeK:x4, C A4,
for some finitely generated ideal 4 of R}.

Lemma 2.2 (cf. [GH, Proposition 1.8]). If S is a t-linked overring of a domain
R and R has the tQQR-property, then S also has the tQQR-property.

Proof. Let T be a t-linked overring of .§. Then 7 is also t-linked over R,
whence T = (R, , where the intersection is taken over some set of primes of
R. For cach P, we have R, = SR\P , so that 7" is an intersection of quotient
rings of §. It follows easily that T is an intersection of localizations of S. 0

Corollary 2.3. Let R be a domain with the tQQR-property. Then

(a) R is a PVMD, and

(b) if T is a flat overring of R, then T also has the tQQR-property. (In
particular, i S is a multiplicatively closed set in R, then Ry has the
tQQ R-property.)

Proof. By [AHZ, Proposition 1.1 and Theorem 1.2], R is an integrally closed
overring of R. Also, by [DHLZ, Remark 2.15], R is z-linked over R. There-
fore, (a) follows from Proposition 2.1 and Lemma 2.2. As for (b), in [DHLZ,
Proposition 2.2] it is noted that a flat overring of a domain R is -linked over
R, so that (b) follows from Lemma 2.2. 0

Proposition 2.4 (cf. [GH, Theorem 1.5]). Ler R have the tQQR-property. If
P is a t-prime of R which is not a maximal t-ideal then R p is a valuation
domain.

Proof. Let M be a maximal f-ideal of R which (properly) contains P. Choose
a valuation overring ¥ of R with prime ideals M’ and P’ such that M’ is
maximal, M' N R = M, and P NR = P. We claim that V is t-linked over
R. To see this, let 4 be a finitely generated ideal of R for which 4~ ' = R.
Then, since M 1s a t-ideal, A gé M , whence AV =V . Thus (A V)_l =V, as
claimed. The proof now follows as in the proof of [GH, Theorem 1.5]. O

At this point, the QQR- and tQQR-theories begin to diverge. For example,
[GH, Theorem 1.9] states that a domain R has the QQR-property < R,, has
the QQR-property for each maximal ideal M of R. Despite Coroliary 2.3
(b), there is no direct analogue of this result for the tQQR-property. In other
words, it is possible for a domain R to fail to have the tQQR-property even
though R,, has the tQQR-property for each maximal ideal M of R. To see
this, consider the domain R of [MZ, Example 2.1]: this is an example of a
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locally PYMD which is not a PVMD. That is, R, is a PYMD (and therefore
satisfies the tQQR-property) for each maximal ideal M of R, but K isnota
PVMD. Since R is clearly integrally closed, R cannot have the 1Q R-property
by Proposition 2.1. Theorem 2.8 is designed to remove the above discrepancy.

Another difference in the theories is related to the concept of unigue minimal
overring. Recall from [GH] that a proper overring 7" of a domain R is a unique
minimal overring of R if T is contained in every proper overring of R. In
[GH, Theorem 1.10] it is shown that, if R is a quasi-local nonvaluation domain
with the QQR-property, then the integral closure R' of R is a unique minimal
overring of R. Thus it might seem natural to define a unique minimal t-linked
overring of a domain R to be a t-linked proper overring which is contained in
every proper f-linked overring. Our next result shows that this reduces to the
original concept. In particular, it will follow from Proposition 2.5 that if R is
a quasi-local PVMD whose maximal ideal is not a f-ideal, then R cannot have
a unique minimal 7-linked overring. Since such examples abound—Ilet R be 2
quasi-local Krull domain of Krull dimension greater than 1, for example-{GH,
Theorem 1.10] has no tQQ R-analogue.

Proposition 2.5. Suppose that a domain R has a unique minimal i-linked over-
ring T . Then R is quasi-local, and the maximal ideal of R is a 1-ideal. More-
over, each overring of R is t-linked over R, and T is a unique minimal overring
of R.

Proof. Since R = (|{R,: P isa t-prime} [Gr, Proposition 4] and since each
R, is t-linked over R, we must have that R = R, for some maximal 7-ideal
P of R. Thus R is quasi-local, and the maximal ideal of R is a r-ideal. Such
domains were characterized in [DHLZ, Theorem 2.6], from which it follows
that every overring of R is t-linked over R, so that 7 becomes a unique
minimal overring. 0O

Corollary 2.6. If R has the QQR-property, then each prime of R is a t-prime.
Proof. Let P be prime. Then R, has the QQR-property and is quasi-local. If
R, is a valuation ring, then it is well known that P is a -prime. Otherwise,
by [GH, Theorem 1.10], R, has a unique minimal overring 7". Since T  is
an intersection of localizations of R (and therefore an intersection of localiza-
tions of R, ), T is t-linked over R, by [DHLZ, Proposition 2.2]. Hence by
Proposition 2.5, PR, is a (-prime of R, , from which it follows that P is a
t-prime of R. 0O

We can now specify when a tQQR-domain is a QQ R-domain.

Corollary 2.7. The following statements are equivalent.
(1) R has the QQR-property.
(2) R has the tQQR-property and each maximal ideal of R is a t-ideal.
(3) R has the tQQR-property and each overring of R is t-linked over R.
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Proof. 1t is obvious that (3) implies ( 1). The equivalence of (2) and (3) follows
from [DHLZ, Proposition 2.2]. Finally, Corollary 2.6 yields that (1) implies
(2). O

We next give an analogue of [GH, Theorem 1.9]. As noted above, it is best-
possible in the sense that “ ¢-” cannot be deleted from its statement.

Theorem 2.8. A domain R has the tQQR-property < R p hasthe QQR-property
Jor each maximal t-ideal P of R.

Proof. (=) Let R have the tQQR-property, and let P be a maximal z-ideal of
R. Then R p has the 1QQR-property by Corollary 2.3(b). Hence, by Corollary
2.7, it suffices to show that PR, is a t-ideal of R, . To this end, let V' be
a valuation overring of R with maximal ideal centered on P . Then (as in
the proof of Proposition 2.4), V is t-linked over R, so V = R, for some
set {P } of primes of R. By [GH, Lemma 1.3], Ue, =r, and each R,
1s a valuation ring. Since prime ideals of valuation domains are automaticallgl
t-primes and since the union of a chain of z-ideals 1s again a f-ideal, it follows
that PR, =JP R, isa t-prime, as desired.

(<) For the converse, let 7" be f-linked over R, let N be a maximal r-ideal
of T,and set M = NNR. Since T is t-linked over R, M, # R [DHLZ,
Proposition 2.1], and so M C P for some maximal t-ideal P of R. Now
R, C R,, C T, . By hypothesis R p has the QQR-property, whence T, 1is an
intersection of localizations of R p-Since T =({T,: N is a maximal t-ideal
of T} [Gr, Proposition 4], it follows that T is an intersection of localizations
of R, as desired. 0O

Corollary 2.9 (cf. [GH, Theorem 1.4]). Let R have acc on t-primes. Then R
has the tQQR-property < R is a PVMD.

Proof. Suppose that R (satisfies acc on t-primes and) has the tQQR-property.
To show that R is a PVMD, it suffices, by [Gr, Theorem 5], to show that R,
is a valuation domain for each maximal z-ideal P of R. However, for such a
P, R, has the QQR-property by Theorem 2.8; and so by Corollary 2.6, every
prime ideal of R, is a t-ideal. In particular, R, has the QQR-property and
satisfies the acc on prime ideals. It now follows from [GH, Theorem 1.4] that
R, is a valuation domain. Since the converse is taken care of by Proposition
2.1, the proof is complete. 0O

Recall that a domain R is a Mori domain if it satisfies acc on divisorial ideals.
It is well known that Krull domains may be characterized as the completely
integrally closed Mori domains. This leads to the following new characterization
of Krull domains.

Corollary 2.10. 4 domain R is a Mori domain with the tQQR-property < R
is a Krull domain.

Proof. (<=) Itis well known that a Krull domain is a PVMD, so this implication
follows from Proposition 2.1.
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(=) It follows from [Q, Théoreme 1] that the - and v-operations on a Mori
domain are the same. Thus by Corollary 2.9, a Mori domain with the tQQR-
property is a PYMD, and it is well known that a Mori PVMD is a Krull domain
[Z,, Proposition 2.1].

As we have seen, [GH, Theorem 1.10] does not have a perfect ‘-theoretic
analogue. However, we are able to give some information about the r-linked
overrings of a domain with the tQ(QR-property.

Proposition 2.11. Let R have the tQQR-property, let T be a t-linked overring
of R, and let N be a maximal t-ideal of T . Then either Ty 2 R or Ty isa
localization of R.

Proof. Since T is t-linked over R, [DHLZ, Proposition 2.1] yields that (N N
R), # R. Hence NN R C M for some maximal f-ideal M of R. Thus
R, CRy g €Ty . Suppose T\ # R,,. Since Theorem 2.8 assures that R,,
has the QQR- property, [GH, Theorem 1 10] yrelds that T, contains the unique
minimal overring RM of R,,, whence T, 2 R . O.

3. POLYNOMIALS AND THE ?(QJ(QR-PROPERTY

The main result in this section gives a family of /QQR-domains that is re-
mote from the archetypes of QQR-domains and PVMD’s. Namely, in Theorem
3.5, we show that the tQQR-property is stable under the adjunction of an in-
termediate.

We need the following terminology. Let R be a domain. A nonzero prime
ideal P of R[X] for which PN R = 0 is called an upper to zero. If I is
an ideal of R[X], we write c(I) for the content of I; this is the ideal of R
generated by the coefficients of the polynomials in /. In [HZ], the concept of
UM T-domain was introduced. A domain R is a UM T-domain if each upper
to zero in R[X] is a maximal z-ideal, or, equivalently, if ¢(P), = R for each
upper to zero P in R[X]. It is convenient to begin with the following result.

Lemma 3.1. If R has the QQR-property, then c¢(P) = R for each upper to zero
P in R[X].

Proof. We may assume that R is quasi-local with maximal ideal M . If Risa
valuation domain, the conclusion is well known [G, Theorem 19.15]. Otherwise,
by [GH, Theorem 1. 10] R has a unique minimal overring R’ (= the integral
closure of R), and R’ is a Priifer domain. Suppose that P isan upper to zero in
R[X] and that P C M R[X]. Then there is an upper to zero P’ in R'[X] with
P'NR[X]=P. By gomg up in the integral extension R[X]C R'[X], there is a
prime ideal Q in R'[X] with P'C Q and QN R[X]= MR[X]. Necessarlly,
Q=M R'[X] for some prime M' of R'. Thus we have produced in R'[X]
an extension @ which contains an upper to zero. However, this is impossible
in a Priifer domain [G, Theorem 19.15]. O

Proposition 3.2. If R has the tQQR-property, then R is a UM T-domain.
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Proof. Let P be an upper to zero in R[X]. If PC M R[X] for some maximal

t-ideal M of R, then PR, [X]C MR, [X]. However, PR, [X] is an upper

to zero over the QQR-domain R,, (cf. Theorem 2.8); so by Lemma 3.1, we

must have ¢(PR,,[X]) = R,,, a contradiction. Thus P ¢ MR[X], whence
P) ¢ M . It follows that ¢(P), = R, as desired. O

Remark. The converse of Proposition 3.2 fails miserably. For example, any
one-dimensional Noetherian domain is a UM T-domain [HZ, Theorem 3.7];
but such a domain has the tQQR-property < it is a Dedekind domain.

The following result is undoubtedly known, but we were unable to find a
proof in the literature. For completeness, we present an elementary proof. It is
also possible to give a proof via Galois-theoretic techniques.

Lemma 3.3. Let K C L be fields such that there are no fields lying properly
between K and L. Then there are no fields lying properly between K (X) and
L(X).

Proof. Obviously, L is a finite algebraic extension of K such that L = K [u]
for each u € L\K . Let d =r/s € L(X)\K(X), where r, s € L[X]. It suffices
to show that K(X)[d] = L(X). Since L is algebraic over K, s is integral
over K[X]. Moreover, if f(Z)=2"+f_,z""+ +fO is the minimal
polynomial for s over K[X], then d =r/s = (s" l+f . /(=

Since f, € K[X], we may change notation and thus assume s € K [X], so that
K(X)[d] = K(X)[r]. Now suppose that the minimal polynomial for r over
K[X] has degree m . A simple computation then shows that the constant term ¢
of r satisfies a polynomial of degree m over K . Clearly, m < [L: K]. If m<
[L: K], then ¢ € K. In this case, let r, = (r—c)/X . Then K(X)[r] = K(X)[r1,
and so, by induction on the degree of r, we may assume that m = [L: K]. It
follows easily that K(X)[r] = L(X), as was to be shown. 0O

We pause to recall the following terminology and notation. If R isa domain,
the Nagata ring (of R in X )is R(X) = R[X], ,where N isthe multiplicatively
closed set of all polynomials in R[.X] which have unit content.

Lemma 3.4. Let (R, M) be a quasi-local domain with the QQR-property. Then
R(X) also has the QQR-property.

Proof. If R is integrally closed, then R is a valuation domain [GH, Theorem
1.6], whence by [G, Theorem 33.4], R(X) is also a valuation domain. We may
therefore assume that R is not integrally closed. By [GH, Theorem 2. 7] the
1ntegral closure R' of R is a Priifer domain with at most two maximal ideals,
and R’ is the unique minimal overring of R.

We now dlstmgulsh two cases. First, consider the case where R’ is quasi-
local. In the case R’ is a valuation domain, and by [GH, Remark 3.5] M
is the maximal ideal of R'. Consider the rings R(X) C R'(X). To show
that R(X) has the QQR-property it suffices by [GH, Theorem 3.3] to show
that there are no rings properly between R(X) and its integral closure, that
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the integral closure R(X) of R(X) is a Priifer domain, and that the maximal
ideal MR(X) of R(X) is unbranched. Since R has the QQR-property, [GH,
Theorem 3.3] implies that M is unbranched, from which it follows easﬂy that
MR(X) is unbranched. [G, Theorem 33.4] yields that R(X) = R(X) is a
Priiffer domain. Hence to complete the proof in this case it suffices to show
that R(X)[d] = R'(X) for each d € R'(X)\R(X). Since R'(X) = RX) =
(R[X]N) =R [X1y. where N = R[X\MR[X] [G, Exercise 3, p. 415], we
may assume that d € R'[X]\R[X] and that each nonzero coefficient of disa
unit of R’ which is not contained in R. Now, since there are no rings lying
properly between R/M and R'/M , Lemma 3.3 1mplles that (R/M)(X)[d] =
(R'/M)(X), and it follows easily that R( )d] = R'(X).

For the second case, we assume that R’ has two maximal ideals N, and N, .
In this case N, NN, = M [GH, Lemma 2.1]. Since R’ is Priifer and M =
N,NN,, R /M is naturally isomorphic to R’ /N, xR’ /N, . Hence (R'/M)(X) ~
(R [N (X)X ( (R /N,)(X) . Since there are no rings properly between R and R’
and since M is a common ideal, the fields R/M, R’ /N1 ,and R’ /N, are iso-
morphic. Now let k = R/M . We have shown that (R'/M)(X) =~ k(X)xk(X).
Define 7: k(X) — k(X) x k(X) by ©(f) = (f,f). Repeating the argu-
ment in [GH, Example 4.3] we have, for all d € (k(X) x k(X))\7(k(X)), that
1(k(X))[d] = k(X) x k(X). Hence for any g € R'(X)\R[X], R(X)[g]/MR(X)
— R'(X)/M(X), and so R(X)[g] = R'(X). Thus R'(X) is the unique min-
imal overring of R(X), and by [GH, Theorem 3.3], R(X) has the QQR-
property. 0O

Theorem 3.5. If R has the tQQR-property, then so does R[X].

Proof. By Theorem 2.8, it suffices to show that R[X],, has the QQR-property
for all maximal t-ideals M of R[X]. If M is an upper to zero, then it is well
known that R[X],, is a valuation domain. Moreover, by Proposition 3.2, R
isa UM T-domain, and by [DL, Theorem A] any prime Q of R[X] for which
Q # (QNR)[X] contains an upper to zero. Hence if M 1is not an upper to zero,
we must have M = PR[X], where P = M N R. In this case R[X],, = R,(X),
and since R, is a quasi-local domain with the QQR-property, Lemma 3.4
implies that R[X],, = R,(X) also has the QQR-property, and the proof is
complete. O
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