
1

What v-coprimality can do for you

Muhammad Zafrullah

No Institute Given

Address: 57-Colgate Street, Pocatello, ID 83201

1.1 Introduction

LetD be an integral domain with quotient fieldK. Two elements x, y ∈ D\{0}
are said to be v-coprime if xD ∩ yD = xyD. A saturated multiplicative set
S ⊆ D\{0} is a splitting set of D if every x ∈ D\{0} can be written as
x = ds where s ∈ S and d is v-coprime to every member of S. The notions
of v-coprimality and splitting sets can be traced back to the work of Gilmer
and Parker [31] and Mott and Schexnayder [34]. These authors worked on
generalizing the following theorem due to Nagata [35]: Let D be a Noetherian
domain and let S be a multiplicative set generated by principal nonzero primes
of D. If DS is a UFD then so is D . The purpose of this article is to present
a brief survey of the notion of v-coprimality, its applications, its morphs and
its generalizations; as a bouquet of flowers from the garden that sprang up
from the seeds planted by Gilmer, Mott, Parker and Schexnayder. The space
constraints make it hard to present the full view of the garden, but I will do
my best to provide a sizeable bouquet. Before I get down to describing what
I aim to do, it seems expedient to give a brief description of the tools that I
will be using throughout this survey.
Let F (D) be the set of nonzero fractional ideals of D, A−1 = {x ∈ K:xA ⊆

D}, Av = (A−1)−1 =
\

A⊆cD
cD, c ∈ K\{0}.

A function ∗ on F (D) is called a star operation, if for all a ∈ K\{0} and
A,B ∈ F (D), the following hold.
(1*) (a)∗ = (a), (aA)∗ = aA∗, (2*) A ⊆ A∗ and A ⊆ B ⇒ A∗ ⊆ B∗ (3*)

(A∗)∗ = A∗.
Given that ∗ is a star operation on F (D) and A,B ∈ F (D), we have

(AB)∗ = (A∗B)∗ = (A∗B∗)∗. These equations are said to define the “∗-
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multiplication”. The function on F (D) defined by A→ Av is a star operation
such that for any star operation ∗ and for any A ∈ F (D) we have A∗ ⊆ Av.
To each star operation ∗ we can associate ∗f defined by A∗f = ∪{F∗: 0 6= F is
a finitely generated D-submodule of A} for A ∈ F (D). Call ∗ of finite type if
A∗ = A∗f for all A ∈ F (D). Indeed for any star operation ∗ the operation ∗f is
of finite type. The well known t-operation is given by t = vf . (So, if A is finitely
generated then obviously At = Av.) The identity function A 7→ A on F (D)
is the d-operation. If {Dα} is a family of overrings of D such that D = ∩Dα

then the function A 7→ A∗ = ∩ADα is also a star operation. An integral ideal
P of D is called a prime ∗-ideal if P is a ∗-ideal and a prime ideal. If ∗ is of
finite type, a proper integral ideal M that is maximal with respect to being a
∗-ideal is called a maximal ∗-ideal and is necessarily prime. Moreover, every
proper ∗-ideal is contained in at least one maximal ∗-ideal. For ∗ of finite type
the set of maximal ∗-ideals is usually denoted by ∗-Max(D). It can be shown

that D =
\

M∈∗−Max(D)

DM . The star operation induced by {DM}M∈t-Max(D)

is usually denoted by w. Obviously every prime ideal contained in a maximal
t-ideal is a w-ideal.
An ideal A ∈ F (D) is a ∗-ideal of finite type if A = B∗ for some f.g.

B ∈ F (D), and A is ∗-invertible if (AB)∗ = D for some B ∈ F (D). A t-
invertible t-ideal is of finite type, and every invertible ideal is a v-ideal. D is a
Prufer v-multiplication domain (PVMD) if each two generated nonzero ideal
of D is t-invertible. Clearly a GCD domain is a PVMD. For details on star
operations the reader may consult sections 32 and 34 of Gilmer’s book [30]
or, especially for the w-operation, the survey [44].
The paper is split into six sections. In section 2, I briefly treat the no-

tion of v-coprimality. I indicate ways in which v-coprimality is different from
coprimality. I also introduce the more general notion of ∗-coprimality by say-
ing that two elements x, y ∈ D are ∗-coprime if (x, y)∗ = D and characterize
v-coprimality. Then I show that v-coprimality is similar to disjointness in par-
tially ordered groups. In section 3, I show how v-coprimality has been used
in circumstances, to do with divisibility, where coprimality has no effect. In
section 4, I describe the splitting sets, indicating some properties. I also pro-
vide a brief historical background on them. In section 5, I give some examples
and applications of splitting sets giving various forms and generalizations of
Nagata-type theorems. In the 6th and last section, I indicate the kind of gen-
eralizations of splitting sets that have interested me and my co-workers.

1.2 v-coprimality

In this section I briefly treat the notion of v-coprimality. I show the ways in
which v-coprimality is different from coprimality. I also introduce the more
general notion of ∗-coprimality by saying that two elements x, y ∈ D are
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∗-coprime if (x, y)∗ = D and characterize v-coprimality. Then I show that
v-coprimality is similar to disjointness in partially ordered groups.

Definition 1. Two nonzero elements x, y ∈ D are called v-coprime if (x, y)v =

D (i.e. xD ∩ yD = xyD or equivalently (x, y)−1 = D).

It is easy to establish that (a, b)v = D ⇔ ((a, b) ⊆ (c/d) ⇒ c|d). So
(x, y)v 6= D ⇔ (there exist c, d ∈ D such that c - d but(a, b) ⊆ c/d). Now,
ordinarily x, y ∈ D are said to be coprime if x and y have no nonunit common
factor in D. Note that x, y being v-coprime implies x, y coprime but not
conversely; as is apparent from the following discussion. Next, the negation
of coprimality is much cleaner than the negation of v-coprimality. Indeed it
is useful to note that GCD(a, b) = 1 ⇔ ∀x∈D((x | a, b) ⇒ x | 1) and so
the negation of “a, b are coprime” would be ∃x∈D((x | a, b) ∧ x - 1). Yet the
negation of (a, b)v = D gives only that (a, b)v 6= D, and (a, b)v 6= D does
not imply that a, b have a nonunit common factor. For example in the ring
D = F [[X2, X3]] where F is a field, (X2,X3)v 6= D but GCD(X2,X3) = 1.
On the other hand in some integral domains, such as GCD domains the notions
of coprime and v-coprime coincide. I must note that v-coprimality is the ring
theoretic equivalent of orthogonality (disjointness) in directed p.o. groups.
Recall that a, b in a p.o. group (G,≤, ·) are disjoint if, inf(a, b) = a ∧ b exists
and is e the identity, or equivalently sup(a, b) = a ∨ b exists and is a · b [30,
page 156] (We use orthogonal as a synonym of disjoint as we deal only with
positive elements.) Indeed given G(D) = {kD:k ∈ K\{0}} partially ordered
by aD ≤ bD if and only if bD ⊆ aD for a, b ∈ K\{0}, G(D) represents the
group of divisibility of D. Let G(D)+ represent the positive cone of G(D);
then for rD, sD ∈ G(D)+, rD ∨ sD ∈ G(D) translates to rD ∩ sD being
principal, and if rD ∩ sD = rsD then in G(D) we have rD ∨ sD = rDsD
which forces rD and sD to be disjoint in G(D).
Let ∗ be a general star operation and call x, y ∈ D ∗-coprime if (x, y)∗ = D.

Since A∗ ⊆ Av for every star operation ∗, we know that x, y being ∗-coprime
implies x, y v-coprime but not conversely. For example in F [X,Y ] where F
is a field, (X, Y )v = D but (X,Y ) = (X, Y )d 6= D. Finally no proper ∗-ideal
contains a pair of ∗-coprime elements.
Proposition 1. For a general star operation ∗ on F (D) the following hold:
(1) r, s ∈ D are ∗-coprime to x ∈ D if and only if (rs, x)∗ = D. (2) For
r1, r2, ..., rn ∈ D, (r1r2...rn, x)∗ = D if and only if (ri, x)∗ = D. (3) (r, x)∗ =
D if and only if every factor of r is ∗-coprime to x.
Proof. (1). Suppose r and s are ∗-coprime to x and consider (x, rs)∗ =
(x, rx, rs)∗ = (x, (rx, rs)∗)∗ = (x, r(x, s)∗)∗ = (x, r)∗ = D. Conversely
suppose (rs, x)∗ = D and consider (x, r)∗ = (x, rs, r)∗ = ((x, rs)∗, r)∗ =
(D, r)∗ = D. Next, (2) and (3) follow from (1).

The following proposition lists some properties of ∗-coprime (and hence
v-coprime) elements.
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Proposition 2. For a general star operation ∗ on F (D) and for r, s ∈ D
the following hold. (i) (r, s)∗ = D ⇔ (rn, s)∗ = D ⇔ (rn, sm)∗ = D for
any natural m,n. (ii) (r, s)∗ = D and r|sy ⇒ r|y. (iii) (r, s)∗ = D ⇒ D =
Dr ∩Ds, here Dr = DS where S = {rn:n ranges over nonnegative integers}.
(iv) (r, s)v = D ⇔ D = Dr ∩ Ds. (v) (r, s)v = D if and only if r and s do
not share any prime t-ideals. (vi) Let x = r

s
∈ K\D, if s has a nonunit factor

that is ∗-coprime with r then x cannot be integral over D.

Proof. (i) is direct. For (ii) note: (r) = (r, sy)∗ = (r, ry, sy)∗= ((r, y(r, s)∗)∗ =
(r, y)∗. For (iii) let (r, s)∗ = D and consider h ∈ Dr ∩ Ds. Then for some
natural numbers m,n hrm, hsn ∈ D. So D ⊇ (hrm, hsn)∗ = h(rm, sn)∗ = hD
(by (i)). For (iv) use (iii) to establish that (r, s)v = D ⇒ D = Dr ∩Ds. For
the converse assume D = Dr ∩Ds and note that (r, s)

∗ = (r, s)Dr ∩ (r, s)Ds

=D. But (r, s)∗ = D⇒ (r, s)v = D. For (v) note that if (r, s)v = D then r, s
cannot be in a proper integral t-ideal and hence cannot be in a prime t-ideal.
Conversely if r, s do not share a prime t-ideal then r, s do not share a maximal

t-ideal. But then (r, s)w =
\

M∈t−Max(D)

(r, s)DM =
\

M∈t−Max(D)

DM = D. But

as (r, s)w ⊆ (r, s)v we have the conclusion. For (vi) use the fact that if r
s is

integral over D then s|rn for some n; then use (i).
Using the aforementioned similarity between disjoint (or orthogonal) el-

ements in (directed) partially ordered groups and v-coprime elements in in-
tegral domains we can associate with each nonempty S ⊆ D\{0} the m-
complement S⊥ = {t ∈ D:(t, s)v = D for all s ∈ S} and state the following
proposition which comes from a recent paper by David Anderson and Chang
[10].

Proposition 3. Let D be an integral domain, S, S1 and S2 nonempty subsets
of D\{0} and let {Sα} be a nonempty family of nonempty subsets of D. (1)
S⊥ = (< S >)⊥ = (< S >)⊥, where < S > denotes the set multiplicatively
generated by S and < S > denotes the saturation of < S > . (We do not
entertain empty sets nor empty products.) (2) S⊥ is a saturated multiplicative
set. (3) If S1 ⊆ S2 then (S1)⊥ ⊇ (S2)⊥. (4) S ∩ S⊥ ⊆ U(D) where U(D)
denotes the set of units of D. (Equality if S ⊇ U(D).) (5) S ⊆ (S⊥)⊥ =
S⊥⊥ (notation). (6) S⊥ = (S⊥⊥)⊥ = S⊥⊥⊥ (notation). (7) (∪αSα)⊥ = (<
∪αSα >)⊥ = ∩(Sα)⊥. (8) (S1S2)⊥ = (S1)⊥ ∩ (S2)⊥. (9) If S1 ∩ S2 6= φ then
(S1)

⊥(S2)⊥ ⊆ (S1 ∩ S2)⊥. (10). D =D<S> ∩DS⊥ .

The proofs are simple. For instance (1) and (2) can be proved using Propo-
sition 1. Next, (3), (4) and (5) were treated in ([5, Proposition 2.4]). For (6),
applying (3) to (5) we get S⊥ ⊇ [(S⊥)⊥]⊥ and also applying (5) to S⊥we
get S⊥ ⊆ [(S⊥)]⊥]⊥. In case of (7), for each α, Sα ⊆ ∪Sα implies by (3)
that (Sα)

⊥ ⊇ (∪Sα)⊥ which in turn means that ∩α(Sα)⊥ ⊇ (∪Sα)⊥. For
the reverse inclusion note that x ∈ ∩α(Sα)⊥ implies that x is v-coprime to
each member of Sα for each α and so x is v-coprime to each member of ∪Sα.
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The equation in (8) can be established using Proposition 1 For (9) note that
φ 6= S1 ∩S2 ⊂ Si (i = 1, 2) and so (Si)

⊥ ⊆ (S1 ∩S2)⊥, but by (2), (S1 ∩S2)⊥
is multiplicative and saturated.
As pointed out in [10] the inclusions in Proposition 3 can be proper. Our

notation is different from that of [10]. This is partly in solidarity with [5]
where it was noted that in the study of partially ordered groups S⊥ is used to
denote the set of elements orthogonal to elements of S, and partly because I
want to see if some of the multiplicative ideal theory of domains can be used
in studying partially ordered groups and monoids.

1.3 Applications of v-coprimality I (Divisibility)

The notion of v-coprimality is useful when we need to sift through factors in
the presence of properties weaker than the GCD property. Recall that D is an
almost GCD(AGCD) domain (monoid) if for each pair of nonzero elements
x, y there is a natural number n such that (xn, yn)v is principal. The notion
of AGCD domains was introduced in [41]. It was studied further in [8] and in
[25]. It was shown in [8, Lemma 3.3] that D is an AGCD domain if and only if
for each set x1, x2, ..., xn of nonzero elements of D there is a natural number
m such that (xm1 , x

m
2 , ..., x

m
n )v is principal.

Here is a brief demonstration of the use of v-coprime elements. For this let
us agree to call a quasi-local domain (D,M) t-local if the maximal ideal M is
a t-ideal.

Proposition 4. Let (D,M) be a t-local AGCD domain. Then for each pair
x, y ∈ D\{0} there is a natural number n such that xn|yn or yn|xn.
Proof. Let x, y ∈ D\{0}. If either of x, y is a unit we have nothing to prove.
So, let x, y ∈M\{0}. Since D is AGCD, (xn, yn)v = dD for some natural n

and d ∈ D. Or (x
n

d
, y

n

d
)v = D. Because M is a t-ideal, x

n

d
, y

n

d
cannot both be

in M, forcing one of xn

d , y
n

d to be a unit and making d an associate of xn or
of yn.

The extent to which v-coprimality can be of use in bringing about unique-
ness and order where there appears to be none is apparent in the study of
factorization in integral domains that do not have the unique factorization
property. Recall for instance that an integral domain in which every nonzero
nonunit is expressible as a product of primary elements is called a weakly
factorial domain (WFD). Now, every nonzero nonunit of a WFD can be writ-
ten uniquely as a product of mutually v-coprime primary elements. Weakly
factorial domains were introduced by Anderson and Mahaney [6] and further
studied by Anderson and Zafrullah [7]. In a recent survey of “alternate” fac-
torization in integral domains Anderson [1] treats WFD’s in greater detail. In
a GCD domain, as mentioned earlier, the notions of coprime and v-coprime
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coincide, making the study of alternate factorizations much easier. It was in
GCD domains that I started studying my kind of unique factorization. An
element r ∈ D is said to be a rigid element if r is a nonzero nonunit such that
for all pairs x, y | r we have x | y or y | x. In [39] the following result was
proved.

Proposition 5. If in a GCD domain D, an element x is a product of finitely
many rigid elements then x can be uniquely expressed as a product of finitely
many coprime rigid elements.

It is well known that D is a GCD domain if and only if its group of
divisibility G(D) is a lattice ordered group. Noting that the rigid element
in a GCD domain is the same as the basic element (b ∈ G+, [0, b] is totally
ordered) in a lattice ordered group. I decided to translate Conrad’s condition F
from [22] to the GCD domain setup as: A GCD domain D satisfies Conrad’s
condition F if every nonzero nonunit of D is divisible by at most a finite
number of mutually coprime nonunits. Clearly, in a GCD domain, a nonzero
nonunit that has no coprime factors is a rigid element. Using this I was able
in [40] to prove the following result.

Proposition 6. A GCD domain D is a ring of Krull type if and only if D
satisfies Conrad’s condition F.

Recall from [32] that an integral domain D is a ring of Krull type ifD has a
family F of prime ideals such that for each P ∈ F , DP is a valuation domain

and D =
\
P∈F

DP is a locally finite intersection. The work on GCD domains

satisfying Conrad’s condition F came in handy when I became involved in a
similar study of almost GCD domains in [25]. But in AGCD domains coprime
and v-coprime do not coincide. For example a Dedekind domain with nonzero
torsion class group is an AGCD domain but since such a domain is not a
PID it must have a prime ideal P that is not principal and this forces P to
have at least two non-associated irreducible elements x, y. Now being non-
associated, x and y are coprime and being in P, x and y are not v-coprime,
because being invertible P is a v-ideal. To cut the long story short we brought
in new definitions. We called for a nonzero nonunit x the set S(x) = < x >
the span of x and we called r an almost rigid element if for each m and for
all x, y | rm there exists n = n(x, y) such that xn | yn or yn | xn. Thus in
an AGCD domain an element r is almost rigid if and only if S(x) contains
no pair of v-coprime nonunits. We also showed that if r is almost rigid then
the set P (r) = {x ∈ D:(r, x)v 6= D} is a maximal t-ideal. Calling ‘of finite
t-character’ a domain in which every nonzero nonunit belongs to at most a
finite number of maximal t-ideals we proved the following theorem.

Theorem 1. An almost GCD domain D is of finite t-character if and only
if for no nonzero nonunit x ∈ D, S(x) contains an infinite set of nonzero
nonunit mutually v-coprime elements.
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Indeed a ring of Krull type of Griffin [32] is a ring of finite t-character.
In the AGCD (and hence GCD) situation an upper bound on the number of
mutually v-coprime elements delivers some interesting results. The following
result will facilitate the appreciation of those results.

Proposition 7. If D is a domain with only a finite number of maximal t-
ideals then D is a semi-quasi-local domain with each maximal ideal a t-ideal.

Proof. Suppose that D has finitely many maximal t-ideals say P1,P2,...,Pr ;
we can assume all of them to be distinct. Now since for every nonunit d in
D, dD is contained in some maximal t-ideal we conclude that P1 ∪P2∪...∪Pr
consists of all nonunits of D. Next since every element of a nonzero prime
ideal M is a nonunit we conclude that for each maximal ideal M we have
M ⊆ P1 ∪P2∪...∪Pr. But then it is well known that M must be contained in
one of the maximal t-ideals say Pi (see e.g. [33, Theorem 83]). But since M
is maximal we have M = Pi. From this it is easy to show that P1,P2,...,Pr
are precisely the maximal ideals of D.

Recall that D is an almost Bezout domain if for each pair a, b ∈ D\{0}
there is a natural number n = n(a, b) such that the ideal (an, bn) is principal.

Corollary 1. An AGCD (a GCD) domain D having only a finite maximal
set S = {x1, x2, ..., xn} of mutually v-coprime (resp. coprime) nonunits is a
semilocal almost Bezout (resp. Bezout) domain.

Proof. The idea is that if there is a maximal set S of mutually v-coprime
nonunits then these nonunits are each almost rigid. To each almost rigid el-
ement xi we have a unique maximal t-ideal P (xi). Now these are the only
maximal t-ideals of D. For if not and there is a maximal t-ideal P such
that P 6= P (xi) for each i then x1x2...xn /∈ P. Then (x1x2...xn, P )t = D.
That is there are y1, y2, ..., yr ∈ P such that (x1x2...xn, y1, y2, ..., yr)v = D.
This means that x1x2...xn, y1, y2, ..., yr do not share any prime t-ideals,
which in turn means that x1x2...xn, ym1 , y

m
2 , ..., y

m
r do not share any prime

t-ideal where m is such that (ym1 , y
m
2 , ..., y

m
r )v = pD. But then p ∈ P and

so is a nonunit and we end up with D = (x1x2...xn, y
m
1 , y

m
2 , ..., y

m
r )v =

(x1x2...xn, (ym1 , y
m
2 , ..., y

m
r )v)v = (x1x2...xn, p)v. Consequently, x1, x2, ..., xn, p

are mutually v-coprime contradicting the maximality of S. Now we end up
with finitely many maximal t-ideals and Proposition 7 applies. For the almost
Bezout part let a, b be two nonzero elements ofD; then sinceD is AGCD there
is n such that (an, bn)v = dD. Or (a

n

d
, b

n

d
)v = D. This means that an

d
, b

n

d
do

not share any maximal t -ideal. But since all the maximal ideals are maximal
t-ideals we conclude that ( a

n

d , b
n

d ) = D. But then (an, bn) = dD.

Now here is an anecdotal proof of the fact that v-coprimality helps.

Proposition 8. If an integral domain D contains two nonunits a, b such that
(a, b)v = D but (a, b) ( D then Spec(D) is infinite.

Proof. Exercise.
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1.4 Applications of v-coprimality II (Splitting sets)

In this section we define and briefly describe the splitting and lcm-splitting
sets and provide brief historical background on them.

Definition 2. A saturated multiplicative set S of D is a splitting multiplica-
tive set if each x ∈ D\{0}can be written as x = ds where s ∈ S and d is
v-coprime to every member of S.

It follows that if S is a splitting set then the m-complement S⊥ =
{t:(t, s)v = D, s ∈ S} is also a splitting set. Note also that if S is a split-
ting set then S ∩ S⊥ = U(D). Here are a few characterizations of splitting
sets whose proofs can be found in [2].

Theorem 2. The following are equivalent for a saturated multiplicative set S:
(1) S is a splitting set. (2) < SD >, the p.o. subgroup of G(D) generated by
{sD:s ∈ S}, is a cardinal summand of G(D), the group of divisibility of D,
i.e., there is a p.o. subgroup H of G(D) such that < SD > ⊕cH = G(D). (3)
If A is a principal integral ideal of DS then A ∩D is a principal ideal of D.
(That is, principal integral ideals of DS contract to principal ideals of D).(4)
There is a multiplicative subset T of D such that (a) each element d of D\{0}
can be written as d = st where s ∈ S and t ∈ T and (b) any of the following
equivalent conditions holds: (i) If s1t1 = s2t2, where si ∈ S and ti ∈ T then
s2 = s1u and t2 = t1u

−1, where u, u−1 ∈ D. That is d = st is unique up to
associates. (ii) If d = st (s ∈ S, t ∈ T ), then dDS ∩ D = tD. (iii) For each
s ∈ S and t ∈ T , (s, t)v = D. (iv) For each t ∈ T, tDS ∩D = tD.

Some forms of the statements in Theorem 2 can be found in [31] and [34].

Definition 3. A splitting set S is an lcm-splitting set if in addition every
element of S has an lcm with every element of D.

Proposition 9. The following are equivalent for a saturated multiplicative
set S: (i) S is lcm-splitting. (ii) s1D ∩ s2D is principal for si ∈ S. (iii)
s1D ∩ s2D = sD for s, si ∈ S. (iv) DS⊥ is a GCD domain.

Remark 1. It may be noted that if S in Proposition 9 is generated by primes
then DS⊥ is a UFD [2, Proposition 2.6].

Since [2, Proposition 2.6] covers a lot of ground it seems best to quote it
as a theorem.

Theorem 3. The following conditions are equivalent for a saturated multi-
plicative set S of D: (1) S is generated by a set of prime elements {pα}
satisfying (a) for each α,

∞\
n=1

pnαD = 0, and (b) for any sequence {pαn} of
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nonassociate members of {pα},
∞\
n=1

pαnD = 0. (2) S is generated by a split-

ting set of principal primes. (3) S is generated by a set of principal prime
elements and S is a splitting set. (4) S is a splitting set and DT is a UFD,
where T = S⊥ is the m-complement for S.

(Note that a set {pα} of principal prime elements is a splitting set of
principal primes if the saturation of the set multiplicatively generated by
{pα} is a splitting set.) The set described in Theorem 3 is called a UF set in
[34].
Using the statement of Definition 2 and using part (10) of Proposition 3

we can state the following result.

Proposition 10. Let S be a splitting multiplicative set in D and let T = S⊥

then S = T⊥ = S⊥⊥ and D = DS ∩DT .

Proposition 11. Let S be a splitting set of D. (1) If P is a prime t-ideal, then
P intersects S or P intersects S⊥ but not both. (Any prime t-ideal that inter-
sects both would be forced to contain a v-coprime pair, which is impossible.)
(2) ([2]) If A is a nonzero ideal of D then AtDS = (ADS)t. (So, P is a prime
t-ideal of D if and only if PDS or PDT is a prime t-ideal of the respective quo-
tient ring.) (3) ([2]) Let T = S⊥ and let s1, s2, ..., sm ∈ S; t1, t2, ..., tm ∈ T .
Then (s1t1, s2t2, ..., smtm)v = ((s1, s2, ..., sm)(t1, t2, ..., tm))v.

The above proposition provides the sort of insight that gives you tools. For
instance, from (1) we gather that if S is a splitting set it partitions the set of
nonzero w-prime ideals into ones that intersect S and those that intersect S⊥.
Also look up [9]. From (2) we infer that if S is a splitting set then t-ideals of D
extend to t-ideals of DS , and v-ideals of finite type extend to v-ideals of finite
type, something that usually does not hold. (For this see the discussion on
pages 2522 and 2523 of [45].) Finally (3) is a gem. It shows that if S is a split-
ting set every v-ideal of finite type can be written as the v-image of a product
of two ideals; one generated completely by elements from S and the other gen-
erated completely by elements from the m-complement T. Now assume that
we are dealing with a t-invertible t-ideal A then we know that A is a v-ideal of
finite type. So A = (s1t1, s2t2, ..., smtm)v = ((s1, s2, ..., sm)(t1, t2, ..., tm))v as
a t-product of two t-invertible t-ideals. Now recall that under t-multiplication
the group of t-invertible t-ideals modulo the group of nonzero principal ideals
is called the t-class group of D, Clt(D); if D is a GCD domain t-invertible
t-ideals are principal and so Clt(D) = 0.These observations led the authors
of [2] to prove the following result.

Theorem 4. If S is a splitting set of D then Clt(D) ' Clt(DS)×Clt(DS⊥).

In case S is an lcm-splitting set
(s1t1, s2t2, ..., smtm)v = ((s1, s2, ..., sm)(t1, t2, ..., tm))v becomes
(s1t1, s2t2, ..., smtm)v = s(t1, t2, ..., tm)v where s = (s1, s2, ..., sm)v. Con-

sequently we have the following result.
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Theorem 5. ([2, Theorem 4.1]) Let D be an integral domain, S an lcm-
splitting set, and T the m-complement for S. Then D = DS ∩ DT , where
DT is a GCD domain. Every finite type integral t-ideal A of D has the form
A = s(ADS ∩D) = s(t1, t2, ..., tm)v where s ∈ S, t1, t2, ..., tm ∈ T. Moreover
the map Clt(D)→ Clt(DS) given by [A] 7→ [ADS ] is an isomorphism.

Splitting sets originated in efforts to produce generalizations of Nagata’s
theorem mentioned earlier. They first appeared in Gilmer and Parker [31]
as ∆-sets, and in [34] as UF sets. Both the ∆ and UF sets can now be
described as splitting sets generated by prime elements. In [31] we also see
[31, Proposition 2.2] stating some conditions that are equivalent to “x, y being
LCM-prime (i.e. v-coprime)” and a statement ([31, Proposition 3.1]) which in
the language of this and many recent papers can be rephrased as: If S is an
lcm-splitting set of D and if DS is a GCD domain then so is D. Then Mott
and Schexnayder [34] gave the splitting sets the proper setting, they showed
that a splitting set splits the group of divisibility of the domain into a cardinal
product of two subgroups. Apparently a wish to give a more general form of
Nagata’s theorem had existed prior to [31], [34] and [38]. For example Samuel
in [37] had restated Nagata’s theorem for Krull domains and Cohn [20] had
published his “Nagata’s Theorem for Schreier domains”. Indeed as pointed
out in [31], Cohn had something like the following result in [21]: Suppose D
is atomic (i.e. every nonzero nonunit of D is a finite product of irreducible
elements) and S is a multiplicative set generated by some primes of D. If DS

is a UFD then so is D. Theorem 177 in [33] can also be cited as an example.
In the next section I present, briefly, the current state of the art as far as
applications and examples of splitting sets are concerned.

1.5 Splitting sets: Examples and Applications

In this section I plan to give examples of splitting sets along with their ex-
treme cases and the various forms and generalizations of Nagata’s theorem
for UFD’s.
Examples lend insight which is so very important for understanding. Un-

derstanding on the other hand causes further appetite for understanding,
which would come from insight, and insight depends on examples and of-
ten reasoning. So, I bring in below some examples and some results that I
hope will enhance the readers’ understanding and at the same time whet the
readers’ appetite for more.
In a Noetherian (Krull, or atomic ) domain D the saturation of every mul-

tiplicative set S generated by nonzero principal primes is an lcm-splitting set
(look up [2, Corollary 2.7]). For general situations a good example of a split-
ting set is what Gilmer and Parker [31] (page 69) describe as a multiplicative
set generated by a family of primes {pα} in D such that no nonzero element
of D is divisible by infinitely many members of {pα} or by infinitely many
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powers of any member of {pα}. More generally in any domain the set U(D)
of units of D is a splitting set and so is D\{0}. (Call these trivial splitting
sets.) Here is a good example of how splitting sets can have an effect.

Theorem 6. ([7, Theorem]) An integral domain D is a weakly factorial do-
main if and only if every saturated multiplicative subset of D is a splitting
set.

Now here is an “appetite” question: All we have seen is an lcm-splitting set
and trivial splitting sets. Is there a clear nontrivial example of a splitting set
that is not an lcm-splitting set? For the answer, suppose that every nontrivial
splitting set in the whole world (universe?) is an lcm-splitting set and let p
be a prime in a Noetherian domain D. Also suppose that D is not a UFD.
Now S = < p > is a splitting set and so is S⊥ and by our assumption S⊥ is
lcm-splitting. But then by Theorem 3 DS is a UFD. Since S is generated by
a prime, by Nagata’s theorem, we have that D is a UFD, a contradiction. On
the basis of these arguments we can say the following.

Remark 2. There are sufficiently many splitting sets that are not lcm-splitting
sets.

We have seen that there are plenty of splitting sets that are not lcm-
splitting; however there are situations in which a splitting set has to be lcm-
splitting. Of these one comes from [9] and it would look best stated as a
theorem.

Theorem 7. ([9, Theorem 2.2]) Let S be a multiplicatively closed subset of
D. If S is a splitting set of D[X] then S is an lcm-splitting set in D and hence
in D[X]. Conversely if S is an lcm-splitting set of D with m-complement T
then S is an lcm-splitting set of D[X] with m-complement T / = {f ∈ D[X]:
(AfDT )v = DT }, where Af denotes the ideal generated by the coefficients of
f.

Of immediate everyday interest is the following corollary:

Corollary 2. D is a GCD domain if and only if S = D\{0} is a splitting set
in D[X].

Ordinary splitting sets can come in handy in some other decision-making
processes. For the next one we need to prepare a little. If x ∈ D such that
x = a1a2...an where ai are atoms, we say that x has an atomic factorization
of length n. An integral domain D is a half factorial domain (HFD) if D is
atomic and for each nonzero nonunit x ∈ D the length n = n(x) of atomic
factorizations of x is fixed. The following results are to appear in [24].

Proposition 12. Let K ⊆ B be an extension of integral domains such that
K is a field, D = K +XB[X] and let S = {f ∈ D:f(0) 6= 0}. Then D is an
HFD if and only if S is a splitting set.
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If, in the above proposition, the field K is replaced by a domain A that is
not necessarily a field, we have a more interesting situation.

Proposition 13. Let A ⊆ B be an extension of integral domains, D = A+
XB[X] and let S = {f ∈ D:f(0) 6= 0}. Suppose that S is a splitting set of D
and that each element of S has all factorizations of fixed length in D. Then
D is an HFD.

To appreciate something, we need to know about what it looks like and
we need to know about what it does. We have already seen some of “what it
does”, and here we shall concentrate on Nagata-type theorems.

Theorem 8. Let S be an lcm-splitting set in D generated by principal primes.
Then D is a UFD (satisfies ACC on principal ideals, is atomic, is integrally
closed, is completely integrally closed) if and only if the same holds for DS .

The proof(s) of the above Theorem schema can be picked from [3]. In
[3] we essentially establish a link between the factorization properties of DS

with those of D when S is a splitting set generated by primes. The results on
integral closure and complete integral closure came off the particular thought
processes we had at that time.

Theorem 9. Let S be a splitting set in D generated by principal primes. If
DS is a Mori domain, (Krull domain, PVMD, GCD domain, almost GCD
domain), then so is D.

The results stated for PVMD’s and GCD domains and AGCD domains
will follow from more general results (Theorem 10). For the Mori domains I
cannot recall any references. So, I will just give a proof. First recall that D
is a Mori domain if D has ACC on integral v-ideals. An integral domain D
is a Krull domain if and only if D is completely integrally closed and Mori
([27]). (A UFD is well known to be a Krull domain.) It is known that a locally
finite intersection of Mori domains is Mori [36]; for a quick reference see [42,
Corollary 4]. Now let DS be Mori, then by Remark 1, DS⊥ is a UFD which
is Mori and D = DS ∩DS⊥ an intersection of two Mori domains.

Theorem 10. (Nagata type theorem for general lcm-splitting sets): If S is
lcm-splitting, then DS is a PVMD (GCD domain, AGCD domain) if and
only if D is.

For PVMD’s, and GCD domains see [2, Theorem 4.3]. Now suppose that
DS is an AGCD domain. Then D = DS ∩ DS⊥ where DS is AGCD and
DS⊥ is GCD. Let a, b be two nonzero elements of D. Then a, b ∈ DS

and so there exists n such that ((an, bn)DS)v = hDS . Since S is lcm-
splitting hDS = ((an, bn)DS)v = (an, bn)vDS . But then by Theorem 5
(an, bn)v = s((an, bn)vDS ∩ D) which is principal because S is a splitting
set and (an, bn)vDS is principal. Conversely, it is easy to verify that if D is
almost GCD and if S is a multiplicative set then DS is AGCD.
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Theorem 11. (cf. [43, Corollary 1.5]) If D is a GCD domain and S a sat-
urated multiplicative set of D then the D +XDS [X] construction is a GCD
domain if and only if S is a splitting set of D .

Let me note that [43, Corollary 1.5] has a problem. I do not mention that
S must be a saturated set (as I do in Theorem 11). The oversight could have
been caused by the fact that if S is a multiplicative set and if S the saturation
of S then D+XDS [X] = D+XDS [X]. Theorem 1 of [43] too can be restated
as: Let D be a GCD domain and let S be a saturated multiplicative set in
D. Then D +XDS [X] is a GCD domain if and only if for every PF-prime P
of D with P ∩ S = φ there exists d ∈ P such that d is not divisible by any
nonunit of S. (A PF prime in a GCD domain is just a prime t-ideal.) In [43,
Corollary 1.5] too, replacing multiplicative S, saturated multiplicative S will
do the trick. (For [43, Theorem 1], Evan Houston has suggested the following
statement: Let D be a GCD domain and let S be a multiplicative set in D.
Then D + XDS [X], is a GCD domain if and only if for every PF-prime P
of D with P ∩ S = φ there exists d ∈ P such that d is not divisible by any
nonunit of S . I am thankful to Evan.) .
I end this section with an odd sort of result. The space constraints prevent

me from making any statements about it, but the result is pretty interesting
without any introductions.

Theorem 12. ([26]) Let S be an lcm-splitting set in a coherent domain D.
If the integral closure of DS is a GCD domain then so is the integral closure
of D. Consequently, if D is Noetherian and if S is a splitting set generated
by principal prime elements of D and if the integral closure of DS is a UFD
then so is the integral closure of D.

Indeed it would be interesting to see if (a) this theorem can be put to some
interesting use and (b) if some of the restrictions can be relaxed.

1.6 Generalizations of splitting sets

When a certain approach appears to be successful in one area, some re-
searchers are tempted to see if it can be mimicked in another area or in the
same area but in a different form. This is how notions get generalized. Gener-
alization does not always have to be bad or trivial. Sometimes you generalize
because you want to get a feel of what you are studying. Remaining in the
box would only let you follow the beaten tracks, but a stroll outside the box
has the potential of opening new doors. I am happy to announce that all the
generalizations of v-coprimality and of splitting sets have proved to be useful
in enhancing our understanding of divisibility.
The first generalization that I would like to present arose in connection

with AGCD domains. The idea germinated in [25] but took real shape in [5],
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and has been further studied by Chang [17]. A saturated multiplicative set
S of D is called an almost splitting set if for each d ∈ D\{0} we can find a
natural number n = n(d) such that dn = st where s ∈ S and t is v-coprime
to every element of S. Like the splitting sets almost splitting sets can be
characterized as saturated multiplicative sets S such that for each d ∈ D\{0}
dnDS ∩D is principal for some natural number n. We can also define almost
lcm-splitting sets as almost splitting sets S such that for s ∈ S and for each
(nonzero) d ∈ D we have snD ∩ dnD principal for some n = n(s, d). It may
be noted that in an AGCD domain an almost splitting set is automatically
an almost lcm-splitting set. Like splitting sets the almost splitting sets are in
abundance. For instance every saturated multiplicative subset of a Dedekind
domain with torsion class group is an almost splitting set; see [5, Theorem
2.11] for a more general result. Here are a couple of results that can be stated
within the setup of this survey.

Theorem 13. ([5, Theorem 3.12]) Let S ⊆ D\{0} be a saturated multiplica-
tive set. Then D + XDS [X] is an AGCD domain if and only if (i) D and
DS [X] are AGCD domains, and (ii) S is an almost splitting set.

A quick corollary to this result is that if D is integrally closed AGCD
domain and if S is a saturated multiplicative set, then D + XDS [X] is an
AGCD domain if and only if S is an almost splitting set. This gives us a
lot of examples of AGCD domains. Just to mention a general one, let D be a
Dedekind domain with torsion class group and let S be a multiplicative subset
of D. Then D +XDS [X] is an integrally closed AGCD domain that is also
coherent. For the “coherent” part see [23, Theorem 4.32].

Theorem 14. ([17, Proposition 2.6]) Let D be integrally closed. Then D\{0}
is an almost splitting set of D[X] if and only if D is an AGCD domain .

Of course there are points of difference; for instance if S is almost splitting
Clt(D) is no longer isomorphic to Clt(DS)× Clt(DS⊥) [17, Example 2.9].
The next generalization of splitting sets is an example of an essential gen-

eralization. As I mention in [45], I kept looking for a result that would allow
me to construct a PVMD D +XDS [X] domain from D a PVMD. It did not
happen until we hit upon the notion of a t-splitting set. A (saturated) multi-
plicative set S of D is a t-splitting set if for each nonzero nonunit d ∈ D we
have (d) = (AB)t where A and B are ideals with A∩S 6= φ and B is such that
(B, s)t = D for each s ∈ S. The t-splitting sets S are characterized by: If A is
a principal ideal of DS then ADS ∩D is t-invertible. In [4] we proved that for
D a PVMD and S a multiplicative set of D the construction D+XDS [X] is
a PVMD if and only if S is a t-splitting set of D. (GCD domains are a special
case of PVMD’s.) In [18] the t-splitting sets are further explored, and there
we bring forth Nagata-type Theorems that do not seem to have anything to
do with the GCD property or the UFD property. Here is a quick example:
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Proposition 14. [18, Corollary 3.8] Let X be an indeterminate over D, G =
{f ∈ D[X]:(Af )v = D} and let S be a nonempty multiplicative subset of
G. Then D[X] is a Krull (resp. Mori, integrally closed, completely integrally
closed, essential,UMT, Prufer v-multiplication) domain if D[X]S is.

I usually tend to think of the set G = {f ∈ D[X]:(Af )v = D} as the
Gilmer set, because I first saw Gilmer use it in [29] and since then I have
often made good use of this set.
From t-splitting sets of elements we graduated to t-splitting sets of ideals

in [19]. Let D be an integral domain, S a multiplicative set of ideals of D and
DS = {x ∈ K: xA ⊆ D for some A ∈ S} the S-transform of D in the sense of
Arnold and Brewer[16]. If I is an ideal of D, then IS = {x ∈ K: xA ⊆ I for
some A ∈ S} is an ideal of DS containing I. Denote by S

⊥ the set of ideals B
of D with (A+B)t = D for all A ∈ S. Call S⊥ the t-complement of S. Denote
by sp(S) the “saturation” of S (set of all ideals C of D such that Ct ⊇ A for
some A ∈ S). Call S a t-splitting set of ideals if every nonzero principal ideal
dD can be written as dD = (AB)t where A ∈ sp(S) and B ∈ S⊥.
It turns out that S being t-splitting is equivalent to sp(S) being t-splitting

and that if S is generated by principal ideals and t-splitting then it is the usual
t-splitting set defined above. Moreover if S is t-splitting then (i) so is S⊥, and
(ii) for each C ∈ S, Ct contains a t-invertible t-ideal of sp(S). (So, a splitting
set of ideals S is v-finite in Gabelli’s terminology [28]) In fact if Si is the set of
all t-invertible t-ideals in sp(S) then Si is a t-splitting set with t-complement
S⊥.It turns out that a lot of results proved for (t-)splitting sets carry through
to this more general setting albeit with some new interpretations. Here’s a
sampling of some of the results proved in [19].

Proposition 15. Let S be a t-splitting set of ideals of D. Then for every
nonzero ideal I of D we have It = (AB)t with A ∈ sp(S) and B ∈ S⊥, and
this "splitting" of I is unique up to t-closures.

Proposition 16. Let S be a multiplicative set of ideals of D. Then S is t-
splitting if and only if S is v-finite and every nonzero principal ideal of DS

contracts to a t-invertible t-ideal.

Proposition 17. A t-splitting set of ideals induces a natural cardinal product
decomposition of the ordered monoid of fractional t-ideals of D under the t-
product and ordered by the usual reverse inclusion.

Finally here’s something to remind you of the earlier “Nagata-type Theo-
rems”.

Proposition 18. Let F be a family of height one t-invertible prime t-ideals
of D such that every nonzero nonunit of D belongs to at most a finite number
of members of F. Let S be a multiplicative set generated by members of F .
Then the following hold: (i) D is a PVMD if and only if so is DS. (ii) D is
a Krull domain if and only if so is DS. (iii) D is of finite t-character if and
only if so is DS .
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Now, a word about a gap that needs to be filled. In jumping from splitting
sets to t-splitting sets we overlooked the possibility of studying, say, d-∗-
splitting sets, d for divisibility. It appears to me that there is a whole world of
results parallel to those we know about splitting sets. Let me give an example.
Call a saturated multiplicative set S a d-d-splitting set if every element x ∈
D\{0} can be written as x = st where s ∈ S and t is d-coprime to every
member of S. Recall that d-coprime ≡ comaximal. Example: A saturated
multiplicative set S generated by height one principal maximal ideals such
that no nonzero member of D is divisible by an infinite set of nonassociated
primes from S.

Proposition 19. If S is a d-d-splitting set generated by height one principal
maximal ideals. Then D is a PID (Noetherian, Prufer) if and only if DS is.

The proofs are straightforward and so are left to the reader, but I hope
the point is made.
Here are some papers that I could not include because given the space I

could not do justice to them (different jargon) or I came to know about them
so late in the day that finding a suitable section was too hard. For the use
of splitting sets in the direct sum decomposition of the ideal class group of a
Dedekind domain see [14]. For splitting sets in the locally half factorial (Dx

is half factorial for each x ∈ D\{0}) setup see [13]. The splitting sets also
show up in the study of elasticity of factorization in [15]. Recently, in [11]
the notion of homogeneous splitting sets has been introduced, in the graded
domain environ. Finally, on seeing an earlier version of this paper, Chang has
sent me a preprint of a recent paper of his with David Anderson and Jeanam
Park [12] that contains a general theory of splitting sets. For a finite character
star operation ∗ they call a saturated multiplicative set S a g∗-splitting set if
each d ∈ D\{0} can be written as d = st where s ∈ S and t is ∗-coprime with
every element of S. It turns out that every g∗-splitting set is a splitting set but
not conversely. They also study the ∗-complement of a subset φ 6= S ⊆ D\{0}
and redo quite a few results on splitting sets. Interesting reading.

Acknowledgement. This survey is an expanded version of the two talks I gave re-
cently, one at the 994th AMS, March 2004, meeting at Tallahassee, Fla., and the
other at the Workshop on Commutative Rings and their Modules held at Cortona,
Italy in June 2004. I am thankful to the organizers of those meetings and to the
editors of the Gilmer Volume for letting me write this survey. I would not be writing
it if Robert Gilmer had not written [30] and he had not been a constant support in
the earlier part of my career. The presentation of this article would have more bad
punctuations and typos if Dan Anderson, Evan Houston Gyu Whan Chang and the
referee had not helped me. I am grateful to them all.
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